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ABSTRACT

The term "inotrope” is familiar and intimately connected with pharmaceuticals clinically used for treatment of low cardiac
output with cardiogenic shock. Traditional inotropic agents exert their effect by modulating calcium signaling in the
myocardium. Their use is associated with poor long-term outcomes. Newer molecules in development intend to break
from calcium mediation and the associated detrimental long-term effects by targeting distinct mechanisms of action to
improve cardiac performance. Thus, "inotropy” does not sufficiently describe the range of potential novel pharmaceutical
products. To enhance communication around and evaluation of current, emerging, and potential therapies, this review
proposes a novel nuanced and holistic framework to categorize pharmacological agents that improve myocardial
performance based on 3 myocardial mechanisms: calcitropes, which alter intracellular calcium concentrations;
myotropes, which affect the molecular motor and scaffolding; and mitotropes, which influence energetics. Novel
chemical entities can easily be incorporated into this structure, distinguishing themselves based on their mechanisms
and clinical outcomes. (J Am Coll Cardiol 2019;73:2345-53) © 2019 The Authors. Published by Elsevier on behalf
of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

notrope derives from Greek, meaning “sinew” improve the contractile function of the heart (1,2).
and “tropic” meaning changing or affecting. The concept is familiar and broadly used by both spe-
The term inotropy has been broadly used for cialists and general medical practitioners because of
many years to describe treatments that directly the worldwide substantial disabling and mortality
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ABBREVIATIONS
AND ACRONYMS

ADP = adenosine diphosphate
ATP = adenosine triphosphate
ca®’ = calcium ion

cAMP = cyclic adenosine
monophosphate

HFrEF = heart failure with
reduced ejection fraction

LVEF = left ventricular ejection
fraction

SR = sarcoplasmic reticulum

burden from heart failure with reduced ejec-
tion fraction (HFrEF) (3). Because of this
vernacular, inotrope has become inter-
changeable with available pharmacological
agents that alter cardiac performance by
changing cardiac myocyte calcium ion (Ca®")
balance and flux (4). The improvement in
contractility from these agents can be mani-
fested by increased left ventricular systolic
pressure generation per unit time (dP/dt)
and augmented hemodynamic performance,
including cardiac output and stroke volume.
This improvement can be visualized on imag-

ing by an elevated left ventricular ejection fraction
(LVEF) or, in some cases, by subsequent reduction
of cardiac biomarkers, including natriuretic peptides.
Some of these agents may have additional secondary
effects, such as changes to vascular tone that may
contribute to their cardiac activities, although the

focus here is the load-independent effects of these
drugs. Unfortunately, the detrimental long-term ef-
fects of these agents on clinical outcomes for patients
with HF1EF are a direct consequence of their mecha-
nisms of action and have sullied the term inotrope

as a potential long-term therapeutic option.

With continued use, conventional inotropic agents—
including catecholamines, phosphodiesterase-3 in-
hibitors, sodium-potassium adenosine triphosphatase
(ATPase) inhibitors, and mixed-mechanism calcium

sensitizers

and phosphodiesterase-3 inhibitors—

detrimentally alter myocardial energetics, decrease
the adenosine triphosphate (ATP)/adenosine diphos-
phate (ADP) ratio, and have been associated with
clinical outcomes that are at best neutral and at worst

deadly, including malignant arrhythmias (4). The

underlying Ca®"-centric mechanism of these agents

may be the dual-edged sword that causes both
their inotropic and detrimental effects. In contrast,
well-established HFrEF medical therapies improve
myocardial contractility and mortality over time

without increasing cardiomyocyte Ca®>" fluxes (5).
New pharmacological agents that alter myocardial
performance and contraction by novel means may be
able to further improve myocardial energetics and
clinical outcomes for patients with HFrEF. Direct
contraction—promoting agents may avoid adverse
clinical effects by targeting new mechanisms of action
separate from conventional Ca®-acting medications.

Inotropy as currently used is an overly broad and

ill-defined concept to describe therapies that improve
the pumping function of the heart. We therefore

propose a novel, more nuanced and holistic frame-

work for drugs that directly improve myocardial
performance to facilitate improved clinical and
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HIGHLIGHTS

e Traditional inotropic agents modulate
calcium signaling in the myocardium but
are associated with poor long-term
outcomes.

Mechanistic nomenclature could improve
communication and recognize therapeu-
tic advances in myocardial functional
enhancement.

Calcium-independent pharmaceuticals
may demonstrate better efficacy and
safety than available agents and should

continue to be developed.

scientific communication, augment pharmaceutical
development, and hopefully enhance clinical care.
The suggested schema categorizes these entities in a
manner that incorporates future therapeutic agents
with distinct mechanisms of action, hemodynamic
consequences, and potential clinical benefits. The
3 broad conceptualized areas (Table 1) that can
mechanistically be targeted are intracellular Ca®", the
physical and myocardial energetics.
We propose cardiac calcitropes, myotropes, and
mitotropes to describe these categories, respectively.

sarcomere,

INOTROPY, CONTRACTILITY,
AND CONTRACTION

Typical definitions of inotropy refer to the function of
the myocardial contractile apparatus that is load-
independent. Two attributes can increase the phys-
ical impulse produced, the force—time product:
increased force or longer contraction time.

e Cardiac contractility is conventionally manifested
by accelerated myocardial fiber shortening that
increases the rise in ventricular dP/dt and leads to
an elevated peak tension. Contractility is load-
independent and defined as the ability of the
myocardium to generate force per unit time.

e In contrast, contraction is the measure of short-
ening of the underlying myocardial structure, the
sarcomere. Although increased contraction can
occur because of augmented contractility,
contraction can also increase independently of
load or dP/dt by mechanisms that prolong the
duration of contraction.

Loading changes can also affect cardiac function;
for instance, vasodilation and decreased afterload can
increase contraction speed with stable contractility.
Many typical measurements of ventricular function,
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TABLE 1 Currently Available and Developmental Direct Inotropic Agents
Pharmacological Agent Mechanism dP/dt Hemodynamic Effects  Patient Outcomes
Cardiac calcitropes
Dobutamine Catecholamine: B-adrenergic receptor— cAMP — 1 Ca** 1 1 Cardiac output 1 Mortality
Dopamine Catecholamine: B-adrenergic receptor— cAMP — 1 Ca** T 1 Cardiac output 1 Mortality
Epinephrine Catecholamine: B-adrenergic receptor— cAMP — 1 Ca** 1 1 Cardiac output 1 Mortality
Milrinone Phosphodiesterase-3 inhibitor: cAMP— 1 Ca®* T 1 Cardiac output 1 Mortality
Levosimendan Phosphodiesterase-3 inhibitor (and calcium sensitizer): 1 1 Cardiac output ?1 Mortality
| Troponin and tropomyosin inhibition; cAMP — 1 Ca®*
Cardiac glycosides Na*-K* ATPase inhibitor: | NCX Ca®* extrusion — 1 Ca** 1 < Cardiac output ? o Mortality
| Hospitalizations
Istaroxime Na*-K* ATPase Inhibitor & SERCA2a Activator: 1 1 Cardiac output ?
| Ca®" extrusion — 1 Ca*, 1 SERCA2a — 1 Ca®' in SR
Cardiac myotropes
Omecamtiv mecarbil  Direct myosin activator o 1 Cardiac output ?
1 Myosin participation in systole
Cardiac mitotropes
Perhexiline Carnitine palmitoyl transferase inhibitor: © 1 Cardiac output ?
| Mitochondrial fatty acids — 1 Glucose metabolism
Trimetazidine Thiolase | inhibitor: | Fatty acid oxidation — 1 Glucose metabolism 1 1 Cardiac Output ?
Elamipretide Cardiolipin stabilizer ? ? ?
1 Adenosine triphosphate synthesis
1 = increase; | = decrease; < = no change; ? = unknown or possible; ATPase = adenosine triphosphatase; Ca** = calcium ion; CAMP = cyclic adenosine monophosphate;
K = potassium; Na = sodium; NCX = sodium ion/calcium ion exchanger; SERCA2a = sarcoplasmic/endoplasmic reticulum calcium ATPase; SR = sarcoplasmic reticulum.

such as measurement of LVEF by imaging or hemo-
dynamically measured cardiac output, are load-
dependent. Although these can be useful clinical
metrics, they are often conflated with contractility in
clinical settings, and they fail to assess the isolated
contractile status of the myocardium. Thus, although
pure vasodilators may improve LVEF or stroke vol-
ume, they cannot be considered inotropes.

MYOCARDIAL CONTRACTILE APPARATUS
AND ENERGETICS

Available inotropic agents and those currently in
development alter ventricular systolic performance
by affecting the myocardial machinery. The 3 broad
components of this machinery are: 1) the contractile
elements that consist of the myosin motor, actin
filaments, and the regulatory proteins, including the
troponin—tropomyosin complex that impede actin
and myosin interactions; 2) the Ca®* cycling elements
responsible for the storage and flux of myocardial
Ca®"; and 3) the energetic elements that include ATP
produced by the mitochondria required for myosin
activity (Central Illustration).

Myosin is the critical molecular motor that con-
verts energy stored as ATP into contractile force. It is
the active enzyme of the myocardial force—producing
structure, the sarcomere. Sarcomeric myosin exists as
thick filaments interdigitated between the thin fila-
ments of actin on which it pulls to mediate

contraction (6,7). Actin-associated troponin and
tropomyosin enable the intracellular Ca®" status
and other factors to regulate the myosin-actin
interaction. At basal intracellular Ca®>" levels before
contraction, tropomyosin complexed with troponins
blocks actin—myosin crossbridge formation. When
stimulatory electrical action potentials activate car-
diac myocytes, Ca®>" enters the cell by sarcolemmal
L-type Ca®" channels and triggers secondary larger
Ca®" release from the sarcoplasmic reticulum (SR)
through ryanodine receptors (8). The elevated Ca**
binds to troponin C and induces a positional change
in tropomyosin that disinhibits actin—myosin cross
bridging.

Once actin is available for binding in response to
increased cytosolic Ca*>* and troponin and/or tropo-
myosin movement, the myosin mechanochemical
cycle can proceed (7). Myosin in the primed state,
which is associated with a lone phosphate moiety
following hydrolysis of ATP to ADP, weakly interacts
with the actin filaments. Myosin only enters the
contractile cycle from this primed state, because
release of the phosphate transitions the myosin to a
strong interaction with actin. The power stroke that
occurs, the mechanical transduction of the myosin
lever arm, generates force and moves the actin
myofilament approximately 10 nm (9). Following
the power stroke, ATP rapidly binds to myosin and
dissociates it from the actin myofilament to reset
the arm for another stroke.

lever power
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CENTRAL ILLUSTRATION The Myocardial Contractile Apparatus and Classes of Therapeutic Agents
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The 3 broad components of the myocardial machinery are the contractile elements and regulatory proteins in the sarcomere, the calcium ion (Ca®*) cycling elements in
the cell and sarcoplasmic reticulum membranes, and the energetic elements, including adenosine triphosphate (ATP) produced by the mitochondria. Pharmacological

agents that improve myocardial performance can be described by this framework: calcitropes alter intracellular calcium concentrations; myotropes affect the molecular
motor and scaffolding; and mitotropes influence energetics. ADP = adenosine diphosphate; cAMP = cyclic adenosine monophosphate; CoA = coenzyme A;

K = potassium; Na = sodium; Pi = inorganic phosphate; SERCA = sarcoplasmic/endoplasmic reticulum calcium ATPase; TCA = tricarboxylic acid cycle.
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Concomitantly, following cell depolarization, Ca®" is
returned to the SR by the sarcoplasmic/endoplasmic
reticulum calcium ATPase 2a (SERCA2a) and passed
into the extracellular space by the sodium-calcium
exchanger and a calcium ATPase. The power stroke
occurs during cardiac systole following the electro-
cardiographic QRS as the correlate of the Ca®>" influx.
The resetting of the molecular motor takes place
during diastole, and the Ca®" efflux is visualized as
the electrocardiographic T-wave.

Myocardial excitation—contraction coupling, as
described previously, and the resulting ventricular
systole requires substantial ATP; without regenera-
tion, the process would use all intracellular ATP
within 1 min (10). The intramyocardial power source
responsible for providing energy to the myocardial
contraction apparatus is the mitochondrion (11). The
intracellular processing of fatty acids and glucose
produces carrier molecules that deliver electrons to
the mitochondrial electron transport chain, estab-
lishing a proton gradient and driving mitochondrial
ATP synthase to produce ATP. In normally func-
tioning myocardium, fatty acids are the primary en-
ergy source. Elevated intracellular and mitochondrial
Ca?" participates in regulation of energy production
by activating enzymes for fatty acid processing
and thus increasing delivery of electrons required for
ATP production (12). However, additional stimuli
such as elevated intracellular ADP also accelerate the
production of ATP to maintain sufficient energetic
reserve.

TRADITIONAL INOTROPES:
CARDIAC CALCITROPES

Inotropy produced by conventional agents, including
catecholamines, phosphodiesterase-3 inhibitors, and
cardiac glycosides (e.g., digitalis), all increase
myocardial force production by altering the concen-
tration of intracellular Ca?*. The augmented Ca*" by
these agents offsets the observed decrement of Ca**
in the SR of patients with HFTEF caused by ryanodine
receptor leak (8). Because the effects are all mediated
by altered Ca®", these agents are proposed to be
called cardiac calcitropes. The calcitropes are defined
by their direct myocardial action rather than
their secondary effects on vascular tone and chrono-
tropy, both of which may also alter cardiac
performance.

Catecholamines such as dobutamine, dopamine,
epinephrine, and norepinephrine activate membrane-
bound, G-protein coupled adrenergic receptors that
stimulate adenylyl cyclase to transform ATP into cy-
clic adenosine monophosphate (cAMP) (4,13). Protein

Cardiac Calcitropes, Myotropes, and Mitotropes

kinase A activated by cAMP phosphorylates multiple
downstream targets, including phospholamban
(which increases SR Ca?' uptake by SERCA2a), the
ryanodine receptors (which then release more Ca*"
during depolarization), and troponin C (which
facilitates actin exposure for myosin). These Ca®*-
mediated effects increase cardiac contractility.

The phosphodiesterase-3 inhibitors (e.g., milri-
none) also exert their effects through cAMP, by
blocking its degradation and stimulating protein
kinase A to activate the same downstream Ca’*"
cascade as catecholamines (4). Levosimendan is a
phosphodiesterase inhibitor, although it also sensi-
tizes the troponin and tropomyosin complex to
facilitate unmasking of the myosin-binding site on
actin, and has distinct vasodilatory effects mediated
by potassium channel activation (14-16). The cardiac
glycosides are sodium-—potassium ATPase inhibitors
that impede establishment of the sodium gradient
used by the sodium-calcium exchanger to extrude
Ca®". This shift increases intracellular Ca®>" to facili-
tate contraction. Although cardiac glycosides do
increase dP/dt, they do not markedly change cardiac
output in clinical studies, perhaps due to concomitant
vasoconstriction and slowing of the heart rate (17-19).
Istaroxime is a nonglycoside sodium-potassium
ATPase inhibitor that may also improve SERCA2a
activity. Although it elevated cardiac output in a
phase 2 randomized controlled trial, its development
program was halted by the manufacturer (20).

Although these cardiac calcitropes can improve
symptoms and may have a role in acute shock,
bridging to transplantation, and for palliation,
observational cohorts and randomized clinical trials
have shown that long-term use of catecholamines
and phosphodiesterase-3 inhibitors is associated with
increased mortality in patients with HFTEF (21-27).
Levosimendan has been associated with similar
mortality as the catecholamines (28-30). In 1 large-
scale trial, the cardiac glycosides decreased heart
failure hospitalizations, but did not improve mortal-
ity in HFrEF patients and were associated with
harm in some modern observational cohorts (31).
The unifying mechanism by which each of these
agents enhance cardiac contractility is increased
intracellular Ca®", and this mechanism may be
why they have been unable to improve long-term
survival of patients with HFTEF.

CARDIAC MYOTROPES

Because myosin is the central actor of the
sarcomere, therapeutics that target the myosin, actin,

the associated regulatory proteins, or other structural

Psotka et al.
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elements of the sarcomere through calcium-
independent mechanisms are proposed to be called
cardiac myotropes. Calcium sensitizers acting on
regulatory troponin and tropomyosin independently
of Ca®" fluxes would be considered cardiac myo-
tropes, and the calcitrope levosimendan also has this
myotropic activity. Myosin is an attractive therapeu-
tic target because it performs the work of myocardial
contraction and may participate in wasteful actin-
independent ATP hydrolysis outside of the myosin
mechanochemical cycle. The myotrope currently
under study, omecamtiv mecarbil, directly activates
cardiac myosin in a calcium-independent manner by
allosterically modulating its activity (32). By binding
to myosin and stabilizing the pre-powerstroke ener-
getic state, omecamtiv mecarbil increases the number
of myosin heads that enter the force-producing
state that are able to pull on actin filaments during
depolarization; it also appears to decrease inefficient
actin-independent noncontractile energy usage.
Omecamtiv mecarbil does not alter Ca*"-dependent
second messenger signaling to alter contractile func-
tion (32).

Direct myosin activation by omecamtiv mecarbil
raises the total amount of time spent in contraction
and systole without increasing the rate of force gen-
eration (dP/dt). Conceptually, cardiac myotropes and
cardiac calcitropes both increase the force—time
product, but although calcitropes increase the force
generated per unit time, known myotropes increase
the time spent expending a given force. At stable
loading conditions, elevated cardiac myotropy aug-
ments the duration of ventricular systole, the systolic
ejection time, and thus, aortic blood flow for each
contraction. Myotropes also appear to be energeti-
cally distinct from calcitropes. Although calcitropes
require increased oxygen use to augment the dP/dt,
myotropes appear to increase contraction without
greater oxygen consumption; thus, they improve
the overall efficiency of the mechanochemical system
(9,32).

The clinical usefulness of the myotrope omecamtiv
mecarbil is currently being evaluated in a phase
3 randomized controlled multicenter clinical trial
(GALACTIC-HF [Registrational Study With Ome-
camtiv Mecarbil/AMG 423 to Treat Chronic Heart
Failure With Reduced Ejection Fraction]; NCT02929329).
Data from earlier investigations suggest that its
alternative mechanism of action may improve clinical
outcomes compared with the cardiac calcitropes
(33,34). Long-term oral dosing of the compound to
patients with stable HFrEF decreases natriuretic
peptide biomarkers and improves ventricular di-
mensions (5,35). This agent is the first in the class
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of pure cardiac myotropes. Nevertheless, even if
omecamtiv mecarbil was unable to improve or even
impair clinical outcomes for patients with HF1EF,
the premise of increasing myocardial contractile
performance by targeting the myosin motor or other
sarcomeric elements would remain an intuitive
therapeutic target that justifies appropriately
descriptive terminology.

CARDIAC MITOTROPES

Myocardial energetics are centered around mito-
chondrial energy production, and drugs acting at the
mitochondria are therefore proposed to be called
mitotropes. Myocardial energetics are an attractive
target because of the energy dependence of myocar-
dial contraction and the metabolic derangements
present in the myocardium of patients with HFrEF.
The primary oxidation substrates transition from
fatty acids to glucose, and there is a reduction in
myocardial ATP (36,37).

Multiple chemical entities that affect the mito-
chondrion or alter myocardial metabolism are in
various stages of pre-clinical and clinical develop-
ment and clinical use. Perhexiline inhibits the protein
that translocates fatty acids into the mitochondria
under the premise that the shift to the more efficient
ATP production through glucose is beneficial (38).
Changes in myocardial contractile activity have been
variable in small clinical studies with perhexiline,
although it does appear to improve myocardial ener-
getics in patients with HFrEF (38,39). Alternatively,
trimetazidine blocks the mitochondrial oxidation of
fatty acids by the enzyme thiolase and similarly shifts
metabolism towards glucose (40). Small cohorts and
open-label randomized studies suggest trimetazidine
improves myocardial performance and contractility
as measured by increased LVEF, tissue Doppler ve-
locities, and cardiac output, and that it clinically
benefits patients with HFTEF (41-44). However, these
results have not been reproduced in more appropri-
ately sized randomized controlled trials. Coenzyme
Q10 is a component of the mitochondrial electron
transport chain that appeared to decrease cardiovas-
cular and all-cause mortality in a small HFrEF trial
with a low event rate (45). No adequately sized trial
has confirmed these results. Elamipretide stabilizes
the essential phospholipid cardiolipin within the
ATP-producing mitochondrial membrane,
which is believed to enhance ATP synthesis. Elami-
pretide seemed to increase left ventricular function,
as manifested by elevated LVEF and cardiac output
in dogs with HFIEF, although it was also associated

inner

with vasodilatory effects and upregulation of
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SERCA2a (46,47). A small placebo-controlled, dose-
ranging study in patients with HFrEF demonstrated
acute reductions in left ventricular volumes with
the highest dose of elamipretide; however, LVEF
and global longitudinal strain were unchanged (48).

CLASSIFICATION OF CURRENT HEART
FAILURE MEDICAL THERAPY

Current guideline-directed neurohormonal antago-
nists for HFrEF improve myocardial activity over
time through load-dependent and load-independent
actions, including by ventricular remodeling (5,49).
The inotropic subclassifications introduced previ-
ously can enhance mechanistic evaluation of these
neurohormonal agents. Focusing on these concepts
suggests that specific combinations of calcitropic,
myotropic, and mitotropic activities may be more
likely to provide survival and myocardial performance
benefits
For instance, beta-adrenergic receptor antagonists
directly decrease contractility in the first few months
of therapy by blocking cAMP formation and the Ca**
cascade, although LVEF improves in that time due to

similar to mneurohormonal antagonism.

remodeling and loading changes (50). Beta-adrenergic
antagonists can therefore be classified as direct nega-
tive calcitropes. Myocardial contractility rebounds
between 3 to 6 months, with continued treatment
associated with improvements in myocardial energy
efficiency, which suggests that beta-adrenergic
receptor antagonists also act as indirect positive
mitotropes (50,51).

Antagonists of the renin-aldosterone-angiotensin
system can also be characterized by these concepts.
Mineralocorticoid receptor antagonists appear to
reduce Ca®>" fluxes and function as negative calci-
tropes (52). These agents may improve contractility
by increasing myosin ATPase activity in addition to
their effects on loading and remodeling, and thus
they may also be positive myotropes (5,53).
Angiotensin-converting enzyme inhibitors and
angiotensin receptor blockers inhibit the increase in
Ca’"-mediated myocyte contractility induced by
angiotensin 2 (54,55). Although it remains unclear
whether this suppression is due to antagonism of
angiotensin 2—augmented Ca®" fluxes (calcitropy) or
increased Ca®" sensitivity (myotropy), it is possible
that each major class of HFrEF therapeutics directly
antagonizes calcitropy. This activity of angiotensin-
converting enzyme inhibitors and angiotensin
receptor blockers is in addition to blocking the
fibrotic,
apoptotic effects of angiotensin 2 (56). Because
established therapeutics for HFrEF

hypertrophic, ventricular loading, and

commonly
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function as negative

beneficial

calcitropes, albeit with
changes on ventricular
loading, remodeling, and noncalcitropic myocardial

concomitant

performance enhancement, it may be that avoidance
of calcitropic activity should be sought in developing
new HFTEF therapeutics.

CONCLUSIONS AND FUTURE DIRECTIONS

The goal of optimizing cardiac function, the load-
independent contractile activity of the myocardium,
is a valuable target for novel therapeutics to treat
HFTEF. It remains unclear whether pharmaceuticals
that use mechanisms other than Ca®* to directly boost
myocardial contractile action will demonstrate better
efficacy and safety than currently available agents. To
improve communication around current agents, to
revise the clinical concept of improved myocardial
performance, and to permit and to encourage accu-
rate evaluation of potential new therapies that
enhance myocardial contractility and contraction, we
have proposed a framework based on mechanisms of
action. These mechanisms include 3 basic myocardial
processes: Ca®"-based regulation; the molecular mo-
tor and sarcomeric scaffolding; and energetics.
Agents that primarily alter Ca®' intracellular con-
centrations should be called cardiac calcitropes, those
that directly affect myosin or other components of
the sarcomere should be called cardiac myotropes,
and those that alter myocardial energetics should be
called cardiac mitotropes. Novel chemical entities can
easily be incorporated into this structure, dis-
tinguishing themselves based on their mechanisms of
action and effects on clinical outcomes. The reviewed
data suggest that therapeutic pathways that avoid
or perhaps antagonize calcitropy may be more
likely to improve long-term myocardial function
and clinical outcomes, and should be targeted for
development. This classification will enhance
communication during drug discovery, facilitate
investigation into mechanisms of action and efficacy,
and inform clinical discussions even if the agents
currently under evaluation fail to demonstrate
clinical benefit.
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