

Pulse Points in Prostate Cancer:

Embracing Advances with PARPi Combinations

DISCLAIMER

This slide deck in its original and unaltered format is for educational purposes and is current as of April 2021. All materials contained herein reflect the views of the faculty, and not those of AXIS Medical Education, the CME provider, or the commercial supporter. Participants have an implied responsibility to use the newly acquired information to enhance patient outcomes and their own professional development. The information presented in this activity is not meant to serve as a guideline for patient management. Any procedures, medications, or other courses of diagnosis or treatment discussed or suggested in this activity should not be used by clinicians without evaluation of their patients' conditions and possible contraindications on dangers in use, review of any applicable manufacturer's product information, and comparison with recommendations of other authorities.

DISCLOSURE OF UNLABELED USE

This activity may contain discussion of published and/or investigational uses of agents that are not indicated by the FDA. The planners of this activity do not recommend the use of any agent outside of the labeled indications.

The opinions expressed in the activity are those of the faculty and do not necessarily represent the views of the planners. Please refer to the official prescribing information for each product for discussion of approved indications, contraindications, and warnings.

USAGE RIGHTS

This slide deck is provided for educational purposes and individual slides may be used for personal, non-commercial presentations only if the content and references remain unchanged. No part of this slide deck may be published in print or electronically as a promotional or certified educational activity without prior written permission from AXIS. Additional terms may apply. See Terms of Service on www.axismeded.com for details.

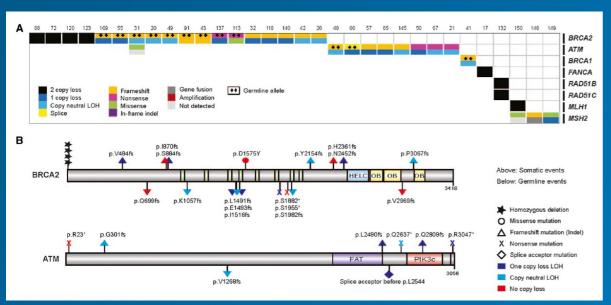
Disclosure of Conflicts of Interest

Johann de Bono, MB, ChB FRCP, MSc, PhD, FMedSci reported a financial interest/relationship or affiliation in the form of *Advisory board, Served as a speaker,* and *Contracted research*: AstraZeneca Pharmaceuticals LP; Astellas Pharma US, Inc; Bayer HealthCare, Inc; Bioxcel Therapeutics; Boehringer Ingelheiml Cellcentric; Daiichi Sankyo Company, Ltd; Eisai Inc; Genentech/Roche; Genmab; GlaxoSmithKline; Janssen Oncology; Merck Serano; Merck Sharp & Dohme; Menarini/Silicon Biosystems; Orion; Pfizer, Inc; Qiagen; Sanofi-aventis; Sierra Oncology; Taiho Pharmaceutical Co, Ltd; Terumo; and Vertex Pharmaceuticals. *Research funding to IRC*: AstraZeneca Pharmaceuticals LP; Astellas Pharma US, Inc; Bayer HealthCare, Inc; Cellcentric; Daiichi Sankyo Co, Ltd; Genentech, Inc; Genmab; GlaxoSmithKline; Janssen Oncology; Merck Serano; Merck Sharp & Dohme; Orion; Sanofi-aventis; Sierra Oncology; Taiho Pharmaceutical Co, Ltd; Pfizer, Inc; and Vertex Pharmaceuticals.

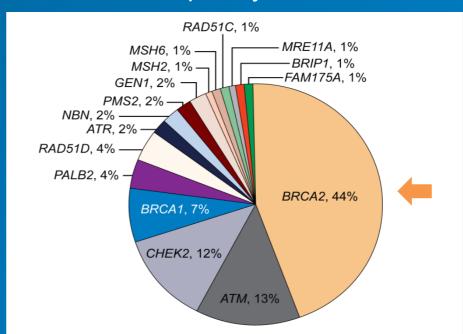
Neeraj Agarwal, MD, reported a financial interest/relationship or affiliation in the form of *Consultant*: Astellas Pharma US, Inc; AstraZeneca Pharmaceuticals LP; AVEO Pharmaceuticals, Inc; Bayer HealthCare, Inc; Bristol-Myers Squibb Co; Calithera Biosciences Inc; Clovis Oncology; Eisai Inc; Eli Lilly and Co; EMD Serono, Inc; Exelixis, Inc; Foundation Medicine; Genentech, Inc; Janssen Oncology; Merck & Co, Inc; MEI Pharma; Nektar Therapeutics; Novartis Pharmaceuticals Corp; Pfizer, Inc; Pharmacyclics, Inc; and Seattle Genetics, Inc.

Learning Objectives

Upon completion of this activity, participants should be better able to:


- Describe the significance of testing for DNA damage repair (DDR) pathway mutations in mCRPC to guide treatment decisions
- Discuss the rationale for combining PARP inhibition with androgen pathway inhibition for the treatment of mCRPC
- Evaluate recent clinical efficacy data and ongoing clinical trials for PARP inhibitor combinations in mCRPC

DNA Repair Gene Alterations Are Common in Metastatic Prostate Cancer


Somatic

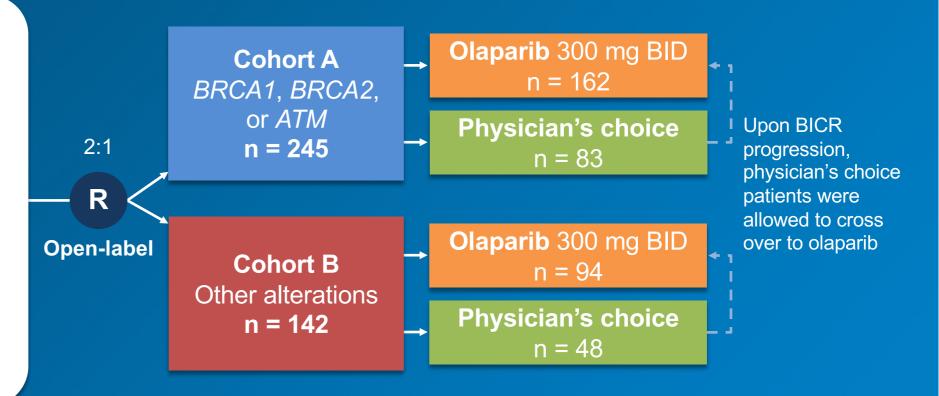
- ~23% of metastatic castration-resistant prostate cancers harbor DNA repair alterations
- The frequency of DNA repair alterations increases with disease progression

Germline

- ~12% of men with metastatic prostate
 cancer have a germline DNA repair defect
- Age and family history do not affect mutation frequency

NCCN (V 1.2021) Guidelines for Genetic Testing

Germline Testing	Somatic Tumor Testing
 Germline genetic testing is recommended for patients with prostate cancer and any of the following: High risk, very high risk, regional, or metastatic prostate cancer Ashkenazi Jewish ancestry Family history of high-risk germline mutations (eg, BRCA1/2, Lynch syndrome mutation) A positive family history of cancer 	 Recommend evaluating tumor for alterations in homologous recombination DNA repair genes, such as BRCA1, BRCA2, ATM, PALB2, FANCA, RAD51D, CHEK2, and CDK12, in patients with metastatic prostate cancer Can be considered in men with regional prostate cancer Testing for MSI-H or dMMR is recommended for patients with metastatic prostate cancer and can be considered for patients with regional or castration-naive

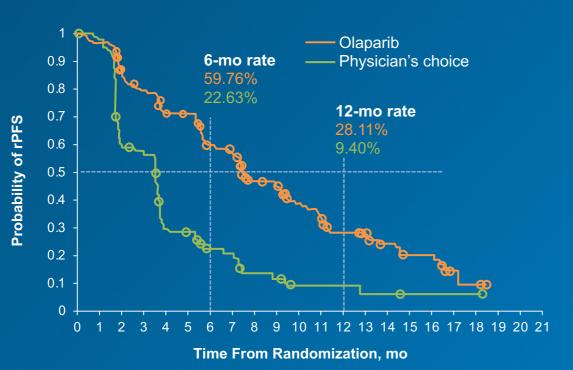

PROfound: Study Design

Key Eligibility Criteria

- mCRPC with disease progression on prior NHA (eg, abiraterone or enzalutamide)
- Alterations in ≥1 of any qualifying gene with a direct or indirect role in HRR

Stratification Factors

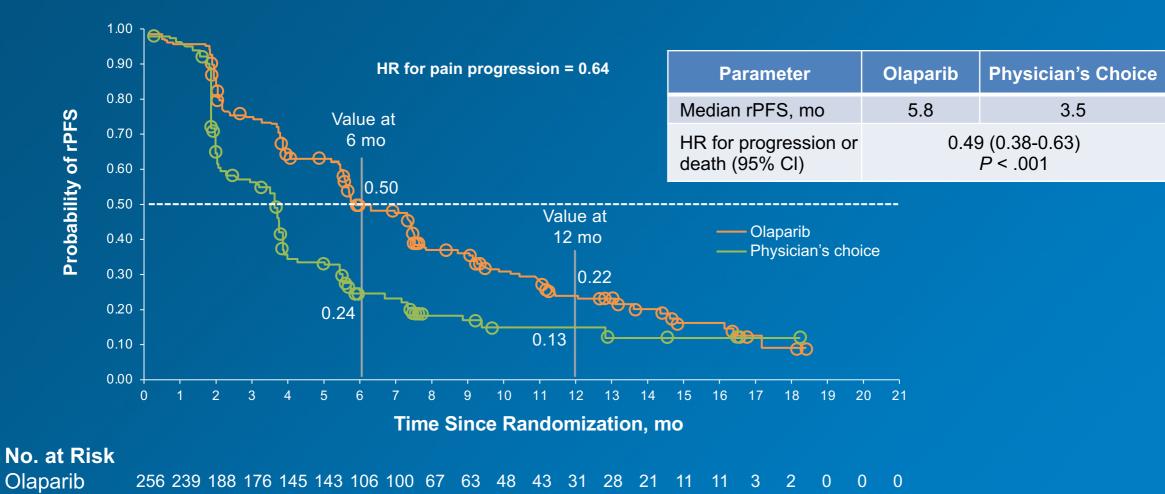
- Previous taxane
- Measureable disease



- Primary endpoint: rPFS in cohort A (RECIST 1.1 and PCWG3 by BICR)
- Key secondary endpoints: rPFS (cohorts A+B); confirmed radiographic ORR in cohort A; time to pain progression in cohort A; OS in cohort A

PROfound Primary Endpoint: rPFS (Cohort A)

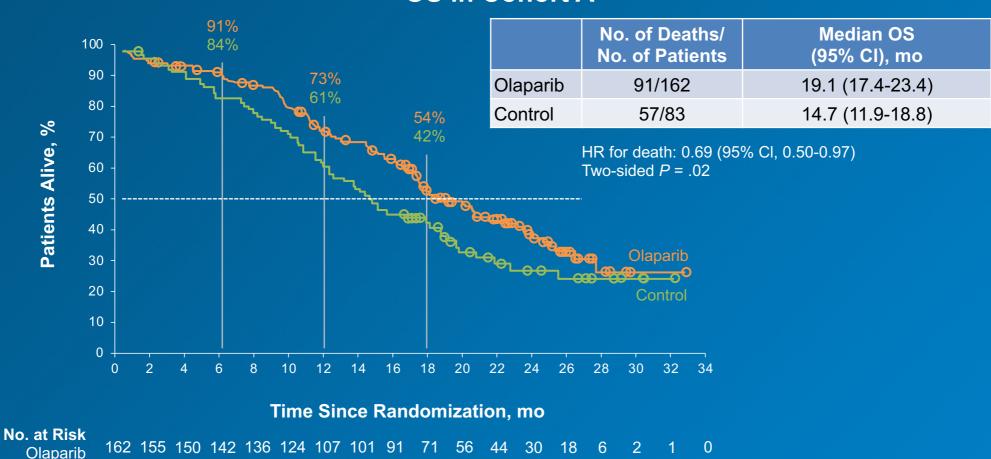
rPFS by BICR in Patients With Alterations in BRCA1, BRCA2, or ARM (Cohort A)


Parameter	Olaparib (N = 162)	Physician's Choice (N = 83)			
Events, n (%)	106 (65.4)	68 (81.9)			
Median rPFS, mo	7.4	3.6			
HR (95% CI)	0.34 (0.25-0.47) P < .001				

No. at Risk

Olaparib 162 149126116102 101 82 77 56 53 42 37 26 24 18 11 11 3 2 0 0 0 Physician's choice 83 79 47 44 22 20 13 12 7 6 3 3 3 2 2 1 1 1 1 0 0 0

PROfound: rPFS Overall Population (Cohorts A+B)


67 38 35

20

Control

PROfound: Final Overall Survival

OS in Cohort Aa

15 11

64 58 50 43 37 27 18

69

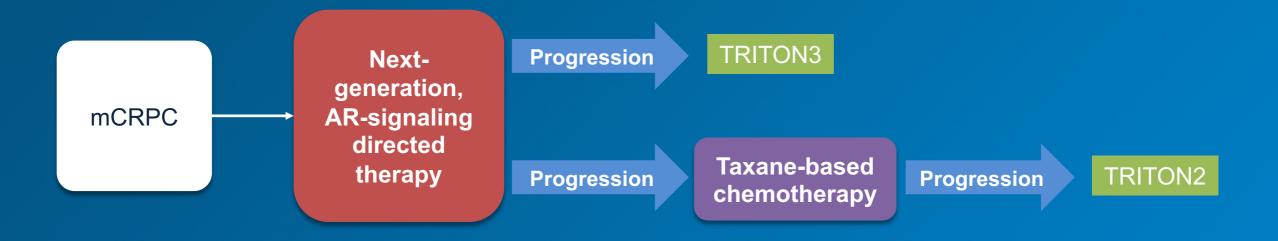
Control

PROfound Safety

	Olapari	b (N = 256)	Control (N = 130)		
Adverse Event	All Grades n (%)	Grade ≥3 n (%)	All Grades n (%)	Grade ≥3 n (%)	
Any Anemia Nausea Fatigue or asthenia Decreased appetite Diarrhea Vomiting Constipation Back pain Peripheral edema Cough Dyspnea Arthralgia Urinary tract infection	244 (95) 119 (46) 106 (41) 105 (41) 77 (30) 54 (21) 47 (18) 45 (18) 35 (14) 32 (12) 28 (11) 26 (10) 24 (9) 18 (7)	130 (51) 55 (21) 3 (1) 7 (3) 3 (1) 2 (<1) 6 (2) 0 2 (<1) 0 0 6 (2) 1 (<1) 4 (2)	114 (88) 20 (15) 25 (19) 42 (32) 23 (18) 9 (7) 16 (12) 19 (15) 15 (12) 10 (8) 3 (2) 4 (3) 14 (11) 15 (12)	49 (38) 7 (5) 0 7 (5) 1 (<1) 0 1 (<1) 0 2 (2) 0 0 0 0 5 (4)	
Interruption of intervention because of adverse event	115 (45)	N/A	24 (18)	N/A	
Dose reduction because of adverse event	57 (22)	N/A	5 (4)	N/A	
Discontinuation of intervention because of adverse event	46 (18)	N/A	11 (8)	N/A	
Death because of adverse event	10 (4)	N/A	5 (4)	N/A	

FDA Approval: Olaparib for mCRPC

In May 2020, based on data from the PROfound study, the FDA approved olaparib for the treatment of patients with pathogenic germline or somatic HRR gene-mutated mCRPC, who have experienced disease progression following prior treatment with enzalutamide or abiraterone

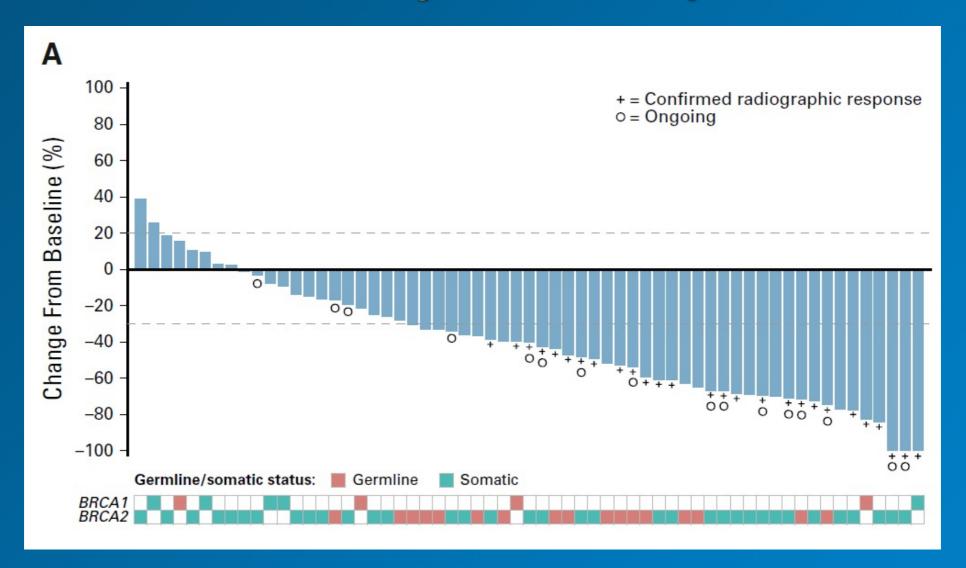


European Commission Approval: Olaparib for mCRPC

In November 2020, based on data from the PROfound study, the European Commission approved olaparib for the treatment of adult patients with mCRPC and *BRCA1/2* mutations (germline and/or somatic) who have experienced disease progression following prior therapy that included a new hormonal agent

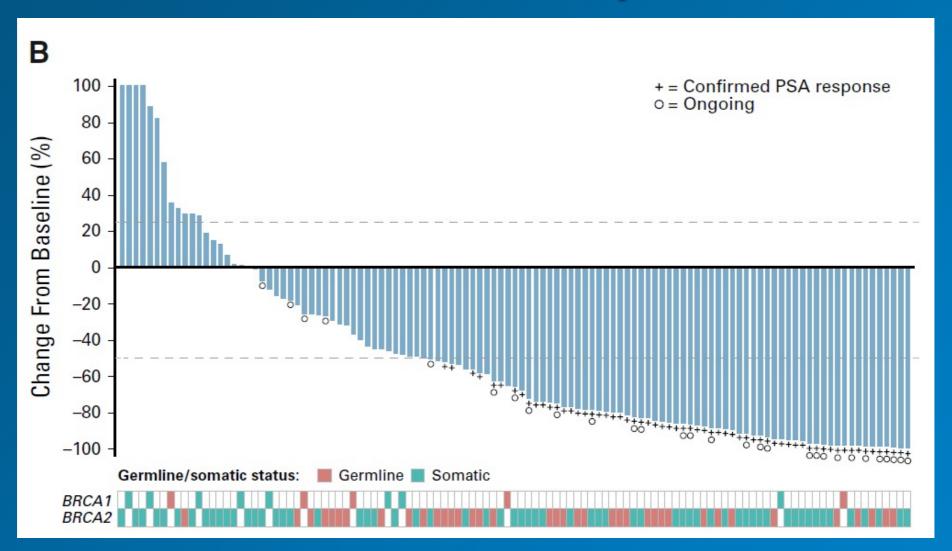
Rucaparib TRITON2 and TRITON3: Study Design

HRR-deficiency is defined by a deleterious alteration in BRCA1, BRCA2, ATM, or 12 other HRR genes (BARD1, BRIP1, CDK12, CHEK2, FANCA, NBN, PALB2, RAD51, RAD51B, RAD51C, RAD51D, RAD54L)



TRITON2: Rate of Response

Response	Investigator-Evaluable Population (N = 65)	IRR-Evaluable Population (N = 62)			
Confirmed ORR, n (%) ^a	33 (50.8) 95% CI 38.1-63.4	27 (43.5) 95% CI 31.0-56.7			
Complete response	4 (6.2)	7 (11.3)			
Partial response	29 (44.6)	20 (32.3)			
Stable disease	25 (38.5)	28 (45.2)			
Progressive disease	6 (9.2)	6 (9.7)			
Not evaluable	1 (1.5)	1 (1.6)			
	Overall Efficacy Population (N = 115)				
Confirmed PSA response rate, n (%)	63 (54.8) 95% CI 45.2-64.1				



TRITON2: Objective Responses

TRITON2: PSA Responses

TRITON2: Response by Non-*BRCA* DDR Gene Alterations

	By DDR Gene Group						
	ATM (n = 49)	CDK12 (n = 15)	CHEK2 (n = 12)	Other (n = 14)			
Confirmed investigator-assessed objective response, n/N (%) CR PR SD PD NE	2/19 (10.5)	0/10 (0)	1/9 (11.1)	4/14 (28.6)			
	95% CI 1.3-33.1	95% CI 0.0-30.8	95% CI 0.3-48.2	95% CI 8.4-58.1			
	0/19 (0.0)	0/10 (0)	0/9 (0)	1/14 (7.1)			
	2/19 (10.5)	0/10 (0)	1/9 (11.1)	3/14 (21.4)			
	9/19 (47.4)	6/10 (60.0)	6.9 (66.7)	8/14 (57.1)			
	7/19 (36.8)	3/10 (30.0)	2/9 (22.2)	1/14 (7.1)			
	1/19 (5.3)	1/10 (10.0)	0/9 (0)	1/14 (7.1)			
6-mo clinical benefit rate, n/N (%)	12/42 (28.6)	3/15 (20.0)	3/8 (37.5)	6/11 (54.5)			
	95% CI 15.7-44.6	95% CI 4.3-48.1	95% CI 8.5-75.5	95% CI 23.4-83.3			
12-mo clinical benefit rate, n/N (%)	3/18 (16.7)	1/14 (7.1)	0/5 (0)	3/8 (37.5)			
	95% CI 3.6-41.4	95% CI 0.2-33.9	95% CI 0.0-52.2	95% CI 8.5-75.5			
Confirmed PSA response, n/N (%)	2/49 (4.1)	1/15 (6.7)	2/12 (16.7)	5/14 (35.7)			
	95% CI 0.5-14.0	95% CI 0.2-31.9	95% CI 2.1-48.4	95% CI 12.8-64.9			
Median time to PSA progression, mo (95% CI)	3.1 (2.8-4.6)	3.2 (2.8-4.6)	7.4 (2.8-7.4)	11.0 (3.0-NR)			

TRITON2: Safety

Most Commonly Reported TEAEs (N = 115)

Individual TEAE (preferred terms) Occurring in ≥15% of Patients	Any Grade, n (%)	Grade ≥3, n (%)
Asthenia / fatigue	71 (61.7)	10 (8.7)
Nausea	60 (52.2)	3 (2.6)
Anemia / decreased hemoglobin	50 (43.5)	29 (25.2)
ALT / AST increased	38 (33.0)	6 (5.2)
Decreased appetite	32 (27.8)	2 (1.7)
Constipation	31 (27.0)	1 (0.9)
Thrombocytopenia / decreased platelets	29 (25.2)	11 (9.6)
Vomiting	25 (21.7)	1 (0.9)
Diarrhea	23 (20.0)	0
Dizziness	21 (18.3)	0
Blood creatinine increased	18 (15.7)	1 (0.9)

FDA Approval: Rucaparib for mCRPC

In May 2020, based on data from the TRITON2 study, the FDA granted accelerated approval to rucaparib for the treatment of patients with deleterious *BRCA1/2* (germline and/or somatic)-associated mCRPC, who have been treated with an androgen receptor–directed therapy and a taxane-based chemotherapy.

The TRITON3 study is underway and recruiting patients with mCRPC and homologous recombination gene deficiency.

Other PARP Inhibitors Undergoing Evaluation in mCRPC

Niraparib

- Phase 2 GALAHAD
 - Niraparib in previously treated mCRPC patients with biallelic DDR mutations established from an 8-gene ctDNA assay
 - Niraparib demonstrates clinical activity with durable responses, particularly in biallelic BRCA1/2 mutation carriers (ORR 41%)¹
- Phase 3 MAGNITUDE
 - Niraparib + abiraterone/prednisone in frontline mCRPC
 - Trial in progress³

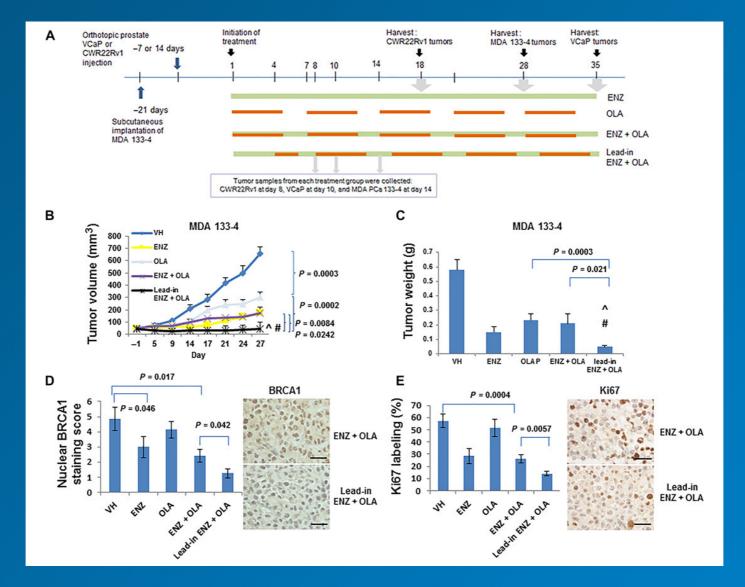
Talazoparib

- Phase 2 TALAPRO-1
 - Talazoparib as monotherapy in men with mCRPC and DDR mutations
 - Antitumor activity in patients who previously received taxane therapy and NHT, especially in patients with a BRCA1/2 alteration (ORR 41.5%)²
- o Phase 3 TALAPRO-2
 - Talazoparib + enzalutamide
 - This combination showed promising signs of efficacy reflected by the reduction in PSA levels from baseline⁴

DDR, DNA damage repair; mCRPC, metastatic castration-resistant prostate cancer; NHT, nonhormonal therapy; ORR, objective response rate; PARP, poly (ADP-ribose) polymerase; PSA, prostate-specific antigen.

ARSI/PARPi Combinations Under Evaluation

- Olaparib + abiraterone: PROpel, BRCAAway
- Talazoparib + enzalutamide: TALAPRO-2
- Rucaparib + enzalutamide: TRITON3, CASPAR
- Niraparib + abiraterone: MAGNITUDE, QUEST
- Veliparib + abiraterone



ARSIs With PARPi

- Pragmatic combination
 - Both drugs utilized in the same therapeutic disease space
 - Likely tolerability of these combinations
- Evidence that PARPi works in DNA repair defective cancers (eg BRCA1/2, PALB2, ATM defective tumors) that can also be sensitive to AR targeted drugs
- Some preclinical evidence that PARP inhibition can block androgen receptor transcriptional activity
- Preliminary data suggesting that AR blockade may induce 'BRCAness'
- Hypothesized clearance of endocrine resistant subclones with PARP inhibition due to synthetic lethal interactions with defective DNA repair in resistant subclones

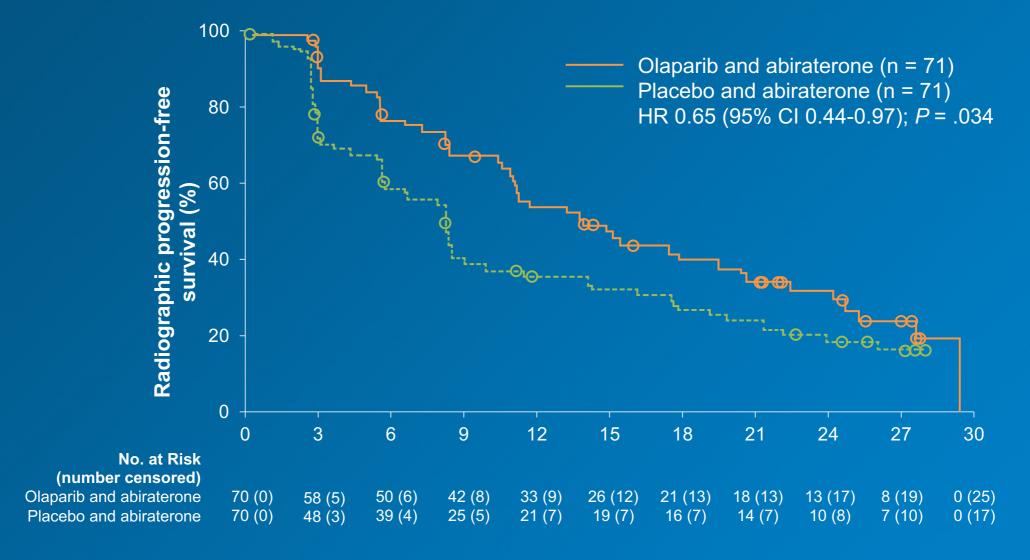
In Vivo Combination Data in MDA PCa 133-4 Model

Olaparib + Abiraterone: Randomized Phase 2

Olaparib combined with abiraterone in patients with metastatic castration-resistant prostate cancer: a randomised, double-blind, placebo-controlled, phase 2 trial

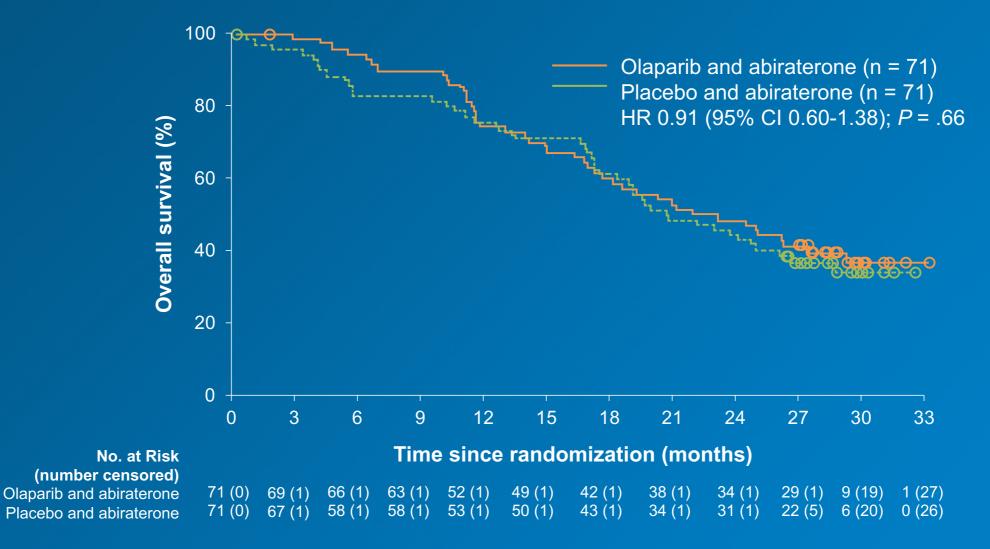
Noel Clarke, Pawel Wiechno, Boris Alekseev, Nuria Sala, Robert Jones, Ivo Kocak, Vincenzo Emanuele Chiuri, Jacek Jassem, Aude Fléchon, Charles Redfern, Carsten Goessl, Joseph Burgents, Robert Kozarski, Darren Hodgson, Maria Learoyd, Fred Saad

We have most data with this combination


Olaparib + Abiraterone: Randomized Phase 2

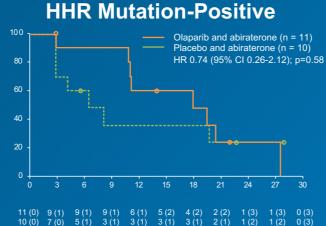
- Double-blind, randomized,
 placebo-controlled, phase 2
- 41 centers; 11 countries; North
 America and Europe
- Abiraterone 1,000 mg with olaparib 300 mg bid vs abiraterone and placebo

- Primary endpoint: Investigator assessed rPFS (RECIST)
- 142 patients randomly assigned; 71 to each arm
- No molecular patient preselection

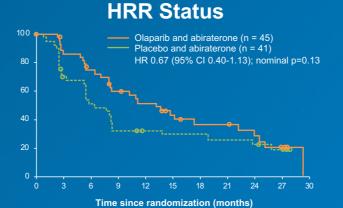


Olaparib + Abiraterone: Radiographic PFS

Olaparib + Abiraterone: No Overall Survival Benefit Demonstrated


Olaparib + Abiraterone: Adverse Events

	Olaparib and abiraterone (N = 71)			Placebo and abiraterone (N = 71)				
Adverse Event	Grade 1-2	Grade 3	Grade 4	Grade 5	Grade 1-2	Grade 3	Grade 4	Grade 5
All	28 (39%)	29 (41%)	5 (7%)	4 (6%)	37 (52%)	19 (27%)	0	1 (1%)
Nausea	26 (37%)	1 (1%)	0	0	13 (18%)	2 (3%)	0	0
Constipation	18 (25%)	0	0	0	8 (11%)	0	0	0
Back pain	17 (24%)	1 (1%)	0	0	13 (18%)	1 (1%)	0	0
Fatigue	14 (20%)	1 (1%)	0	0	7 (10%)	2 (3%)	0	0
Asthenia	13 (18%)	3 (4%)	0	0	10 (14%)	0	0	0
Vomiting	13 (18%)	2 (3%)	0	0	8 (11%)	1 (1%)	0	0
Peripheral edema	13 (18%)	0	0	0	8 (11%)	0	0	0
Decreased appetite	12 (17%)	0	0	0	4 (6%)	1 (1%)	0	0
Diarrhea	11 (15%)	0	0	0	7 (10%)	1 (1%)	0	0
Dyspnea	10 (14%)	0	0	0	4 (6%)	1 (1%)	0	0
Pyrexia	10 (14%)	0	0	0	1 (1%)	0	0	0
Cough	9 (13%)	2 (3%)	0	0	2 (3%)	0	0	0
Bone pain	9 (13%)	1 (1%)	0	0	7 (10%)	1 (1%)	0	0
Urinary tract infection	8 (11%)	1 (1%)	0	0	1 (1%)	2 (3%)		
Arthralgia	8 (11%)	0	0	0	3 (4%)	1 (1%)	0	0
Viral upper respiratory tract infection	8 (11%)	0	0	0	3 (4%)	0	0	0
Abdominal pain	8 (11%)	0	0	0	1 (1%)	0	0	0
Anemia	7 (10%)	14 (20%)	1 (1%)	0	1 (1%)	0	0	0
Neutropenia	7 (10%)	1 (1%)	0	0	0	0	0	0
Hypokalemia	4 (6%)	2 (3%)	0	0	4 (6%)	0	0	0
Pneumonia	2 (3%)	2 (3%)	2 (3%)	0	0	3 (4%)	0	0
Musculoskeletal chest pain	1 (1%)	0	0	0	3 (4%)	2 (3%)	0	0
Myocardial infarction	0	4 (6%)	0	0	0	0	0	0


Olaparib + Abiraterone: rPFS Major Caveats to Reported Sub-Group Analyses

Intention-to-Treat Olaparib and abiraterone (n = 71) Placebo and abiraterone (n = 71) HR 0.65 (95% Cl 0.44-0.97); p=0.034 No. at Risk (number censored) Olaparib and abiraterone Placebo and abiraterone 70 (0) 58 (5) 50 (6) 42 (8) 33 (9) 26 (12) 21 (13) 18 (13) 13 (17) 8 (19) 0 (25) 70 (0) 48 (3) 39 (4) 25 (5) 21 (7) 19 (7) 16 (7) 14 (7) 10 (8) 7 (10) 0 (17)

Partially Characterized

Wild-type Olaparib and abiraterone (n = 15) Placebo and abiraterone (n = 20) HR 0.52 (95% CI 0.24-1.15); nominal p=0.11 No. at Risk (number censored) Olaparib and abiraterone (n = 15) Placebo and abiraterone (n = 20) HR 0.52 (95% CI 0.24-1.15); nominal p=0.11 Time since randomization (months) (number censored) Olaparib and abiraterone Placebo and abiraterone 15 (0) 12 (2) 10 (2) 10 (2) 8 (2) 7 (2) 6 (2) 5 (2) 4 (3) 2 (5) 0 (7) 20 (0) 15 (0) 15 (0) 10 (1) 8 (1) 7 (1) 4 (1) 4 (1) 2 (1) 1 (2) 0 (3)

45 (0) 37 (2) 31 (3) 23 (5) 19 (6) 14 (8) 11 (9) 11 (9) 8 (11) 5 (11) 0 (15) 41 (0) 26 (3) 19 (3) 12 (3) 10 (5) 9 (5) 9 (5) 8 (5) 7 (5) 5 (6) 0 (11)

Subgroup Analyses

- Multiple DNA repair genes 'lumped' incorrectly as HRR genes
- Very small numbers in subgroups
- Olaparib and abiraterone group:
 - 3 ATM
 - 2 BRCA2
 - 2 CDK12
 - 2 CHEK2
 - 1 BRIP1
 - 1 CHEK1

Multiple Combo Registration Trials Ongoing But Many Major Questions Remain

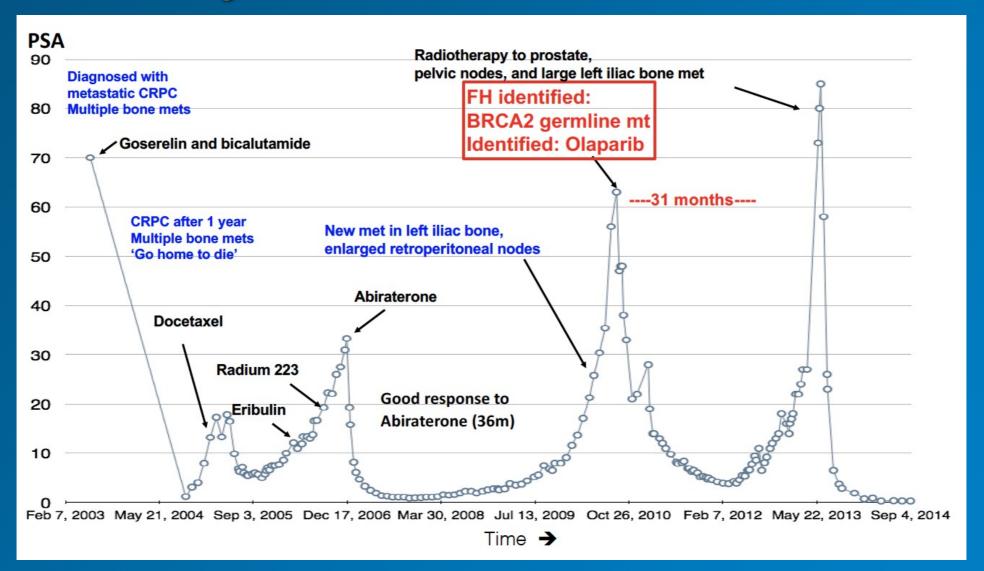
- Can we justify treating tumors without DNA repair defects that sensitize to PARP inhibition?
- Should the lack of OS benefit in the olaparib/abiraterone randomized phase 2 trial raise concerns?
 - If the phase 3 trials improve rPFS but not OS, what does this prove?

- Is reported cardiac toxicity a real concern?
- Should trials compare combined versus serial treatment?

PARP Inhibitor Combination Therapy Trials in mCRPC

Agent	Trial	Phase	Arms	Setting	Primary Endpoint(s)
Olaparib	PROpel 3 (NCT03732820)		Olaparib + abiraterone vs placebo + abiraterone	Chemotherapy and new hormonal agent-naïve	rPFS
	KEYLYNK-010 (NCT03834519)	3	Olaparib + pembrolizumab vs abiraterone or enzalutamide	Prior treatment with 1 next-generation hormonal agent and chemotherapy; Unselected for HRR defects	OS rPFS
	BRCAAway (NCT03012321)	2	Olaparib vs abiraterone vs olaparib + abiraterone	DRD	Objective PFS
Rucaparib TRITON3 (NCT02975934)		3	Rucaparib vs physician's choice (docetaxel, abiraterone, or enzalutamide)	Disease progression after 1 prior next-generation AR targeted tx; Deleterious mutation in a BRCA1/2 or ATM gene	rFPS
	CASPAR (NCT04455750)	3	Rucaparib + enzalutamide vs placebo + enzalutamide	First-line mCRPC	rPFS OS
Niraparib	MAGNITUDE (NCT03748641)	3	Niraparib + abiraterone + prednisone vs placebo + abiraterone + prednisone	First-line mCRPC Cohort 1: positive for DRD Cohort 2: not positive for DRD	rPFS
	QUEST (NCT03431350)	1/2	Niraparib + cetrelimab; Niraparib + abiraterone + prednisone	mCRPC	Recommended phase 2 dose
Talazoparib	TALAPRO-2 (NCT03395197)	3	Talazoparib + enzalutamide vs placebo + enzalutamide	First-line mCRPC; Unselected pts & pts harboring DDR deficiencies	rPFS
Veliparib	NCT01576172	2	Veliparib + abiraterone + prednisone vs abiraterone + prednisone	mCRPC	Confirmed PSA response rate

Case Study


A 48-year-old man was diagnosed with metastatic Gleason 5 + 5 prostate cancer 1 year ago. He has a family history of breast cancer in his mother and aunt. He received leuprolide and docetaxel x 6 cycles for mCRPC and is now has disease progression with new painful bone and liver metastases. He does not respond to enzalutamide.

What do you recommend next?

- a) Pembrolizumab
- b) Abiraterone/prednisone
- c) Radium-223
- d) Test for BRCA mutations and, if (+) olaparib
- e) Sipuleucel-T

Case Study: Royal Marsden Patient Case

Pulse Points in Prostate Cancer:

Embracing Advances with PARPi Combinations

