CLINICAL CASE

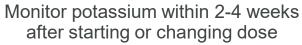
- 71-year-old patient recently discharged after his first hospitalization for HF (hypertensive, HFrEF, LVEF 32%)
- History of CKD (eGFR 58 mL/min/1.73 m²), RAC 28 mg/g before HFH, under ACEI (ramipril 10 mg/d, hydrochlorothiazide 12.5 mg/d, amlodipine 10 mg/d), eGFR stable over the last 2 years
- Presenting (30 days post discharge) with:
 - NYHA class II, BP 128/82 mmHg, no orthostatic hypotension, HR 58 bpm, no pulmonary rales, no lower limb edema, "normal" JVP, stable body weight vs discharge (BMI 29 kg/m²)
 - eGFR 48 mL/min/1.73 m² along with hyperkalemia 5.6 mmol/L, Na⁺ 140 mmol/L, bicarb 26 mmol/L
 - Current regimen: sacubitril valsartan 97/103 bid, bisoprolol 10 mg od, dapagliflozin 10 mg od, eplerenone 25 mg od, furosemide 20 mg/d

CLINICAL CASE

CARDIORENAL PROTECTION

Prescribe or continue RAASi and accept the presence of hyperkalemia?

MANAGEMENT OF HYPERKALEMIA


Avoid, discontinue, or down-titrate RAASi and lose the benefits on clinical outcomes?

DILEMMA

CKD and HF Treatment Guidelines Recommend Novel K⁺ Binders to Treat Hyperkalemia and Enable GDMT

KDIGO 2020 Clinical Practice Guideline for Diabetes Management in CKD¹

Initiate ACEI or ARB in patients with CKD

If HK occurs:

- Review concurrent drugs
- Moderate potassium intake
- Consider:
 - Diuretics
 - Sodium bicarbonate
 - Gl cation exchangers

Reduce dose or stop ACEI or ARB as last resort

KDIGO 2021 Clinical Practice Guideline for the Management of Blood Pressure in CKD²

Recommendations are aligned with KDIGO 2020 guidelines. In addition:

Improvement in K⁺ control could lead to increased use of RAASi

In CKD patients receiving RAASi who develop hyperkalemia, the latter can be controlled with newer oral K⁺ binders in many patients, with the effect that RAASi can be continued at the recommended dose

2021 ESC HF Guidelines³

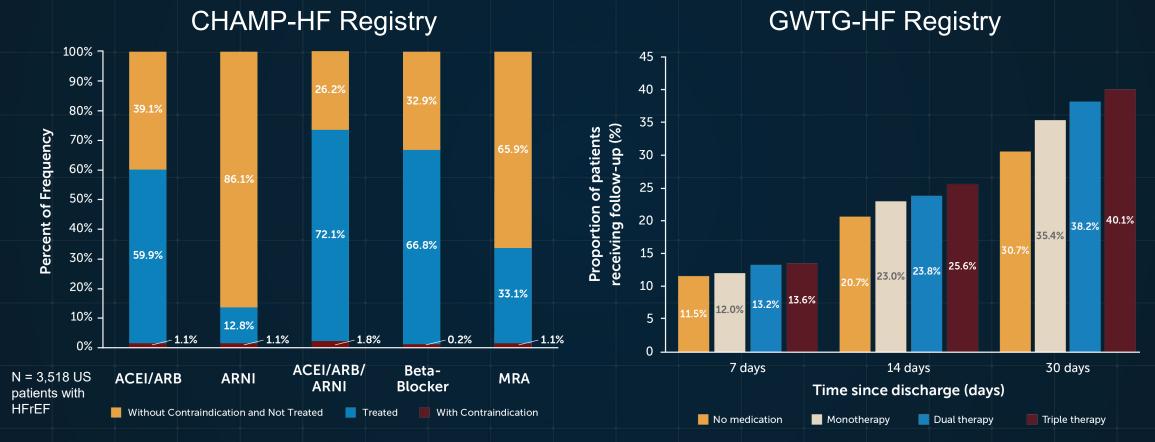
RAASi should be optimized when K⁺ levels are <5.0 mEq/L; closely monitor K⁺ levels

In chronic or recurrent hyperkalemia, an approved K+-lowering agent should be initiated as soon as K+ levels are confirmed as >5.0 mEq/L

Maintain K⁺-lowering agent unless alternative treatable etiology for hyperkalemia is identified

- 1. KDIGO Diabetes Work Group. Kidney Int. 2020;98(4S):S1-S115. 2. KDIGO Blood Pressure Work Group. Kidney Int. 2021;99(3S):S1-S87.
- 3. McDonagh TA, et al. *Eur Heart J.* 2021;42(36):3599-3726.

Primary Outcome: Adjusted Mean Change in sK+ Level (mEq/L) from Baseline to End of Study


	w 1 2 2 2		er () e ()	8 8 8		. 2
Baseline eGFR subgroup	Change from baseline (95% CI)				P value for	
	Patiromer (N = 439)	Placebo (N = 439)	Difference in change from baseline (95% CI)			interaction
≥60 mL/min/1.73m ² (N = 227; N = 237)	0.05 (0.00; 0.10)	0.12 (0.07; 0.17)	⊢		-0.07 (-0.11; -0.03)	0.027
<60 mL/min/1.73m ² (N = 212; N = 202)	0.00 (-0.05; 0.06)	0.14 (0.08; 0.19)	⊢		-0.14 (-0.18; -0.09)	
≥45 mL/min/1.73m ² (N = 321; N = 347)	0.02 (-0.03; 0.06)	0.09 (0.05; 0.13)	+●-1		-0.08 (-0.11; -0.04)	0.003
<45 mL/min/1.73m ² (N = 118; N = 92)	0.06 (-0.02; 0.14)	0.25 (0.17; 0.33)	—		-0.19 (-0.26; -0.12)	
Overall	0.03 (-0.01; 0.07)	0.13 (0.09; 0.16)	H		-0.10 (-0.13; -0.07)	
		-0.4	-0.2	0.2		
					→	

Patiromer better

Placebo better

eGFR, estimated glomerular filtration rate; sK⁺, serum potassium. Butler J, et al. *Eur J Heart Fail*. 2022;43(41):4362-4373.

Low Rates of Guideline-Directed RAASi Therapy in HF

ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; ARNI, angiotensin receptor neprilysin inhibitor; HF, heart failure; HFrEF, heart failure with reduced ejection fraction; MRA, mineralocorticoid receptor antagonist; RAASi, renin-angiotensin-aldosterone system inhibitor.

Greene SJ, et al. *J Am Coll Cardiol*. 2018;72(4):351-366. Wirtz HS, et al. *J Am Heart Assoc*. 2020;9(16):e015042.

Suboptimal MRA Therapy Is Associated with Increased Mortality

CKD, chronic kidney disease; MRA, mineralocorticoid receptor antagonist. Epstein M, et al. *Am J Manag Care*. 2015;21(11 Suppl):S212-S220.