

DISCLAIMER

This slide deck in its original and unaltered format is for educational purposes and is current as of June 2024. All materials contained herein reflect the views of the faculty, and not those of AXIS Medical Education, the CME provider, or the commercial supporter. Participants have an implied responsibility to use the newly acquired information to enhance patient outcomes and their own professional development. The information presented in this activity is not meant to serve as a guideline for patient management. Any procedures, medications, or other courses of diagnosis or treatment discussed or suggested in this activity should not be used by clinicians without evaluation of their patients' conditions and possible contraindications and/or dangers in use, review of any applicable manufacturer's product information, and comparison with recommendations of other authorities.

DISCLOSURE OF UNLABELED USE

This activity may contain discussion of published and/or investigational uses of agents that are not indicated by the FDA. The planners of this activity do not recommend the use of any agent outside of the labeled indications.

The opinions expressed in the activity are those of the faculty and do not necessarily represent the views of the planners. Please refer to the official prescribing information for each product for discussion of approved indications, contraindications, and warnings.

USAGE RIGHTS

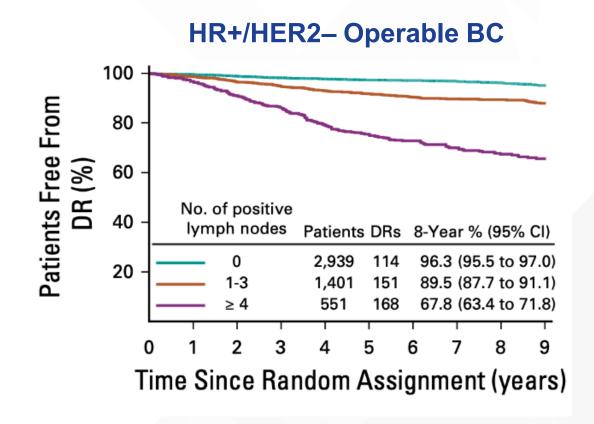
This slide deck is provided for educational purposes and individual slides may be used for personal, non-commercial presentations only if the content and references remain unchanged. No part of this slide deck may be published in print or electronically as a promotional or certified educational activity without prior written permission from AXIS. Additional terms may apply. See Terms of Service on www.axismeded.com for details.

Learning Objectives

Upon completion of this activity, participants should be better able to:

- 1. Outline evidence-based molecular testing and risk assessment strategies for patients with eBC
- 2. Appraise emerging data and accumulating evidence supporting the efficacy of CDK4/6 inhibitors for appropriate HR+/HER2- eBC patients
- 3. Examine disparities in the diagnosis and management of patients with eBC leading to poor outcomes
- 4. Select appropriate mitigation and management strategies for CDK4/6 inhibitor-related and ET-related AEs to prevent and reduce toxicities, treatment delays, and discontinuation

Clinical Significance of Molecular Testing and Assessment of Risk of Recurrence in eBC


Early Breast Cancer

- Disease confined within the breast and/or neighboring lymph nodes
- ~90% of breast cancer diagnoses are early breast cancer (eBC)
 - ~70% of patients with eBC are HR+, HER2-
 - ~20% of patients with eBC experience disease recurrence within 10 years
 - > Risk of recurrence is highest in the first 2 years following diagnosis
 - > Patients with disease recurrence have a worse prognosis
 - > Patients with high-risk clinical and/or pathologic features are more likely to experience recurrence or distant metastases
- Goal of HR+, HER2- eBC treatment: eradicate cancer and prevent disease recurrence
- Standard of care for HR+, HER2- eBC includes locoregional therapies (surgery, radiation therapy) and adjuvant/neoadjuvant systemic therapies (chemotherapy, endocrine therapy)

HR+ eBC: Assessing Risk

- Clinical + pathologic features
- 10-year estimated risk of relapse with current therapies:
 - >30% (ALN ≥4)
 - >20% (ALN 1-3 + another poor prognostic factor)

Risk of Early Breast Cancer Recurrence

Approximately 20-30% of patients with eBC experience relapse^{1,2}

Factors that affect risk of recurrence in people with eBC³⁻⁶:

- Young age at diagnosis
- Tumor morphology (ductal versus lobular)
- Larger tumor size
- Higher tumor grade
- Symptomatic presentation
- Presence of lymphovascular invasion

- Axillary node involvement
- Negative ER or HER2 overexpression
- Positive or close margins
- PR negativity
- High proliferation rate (eg, high Ki-67)
 - Metaplastic (vs. non-metaplastic) carcinoma

Molecular Testing In Breast Cancer

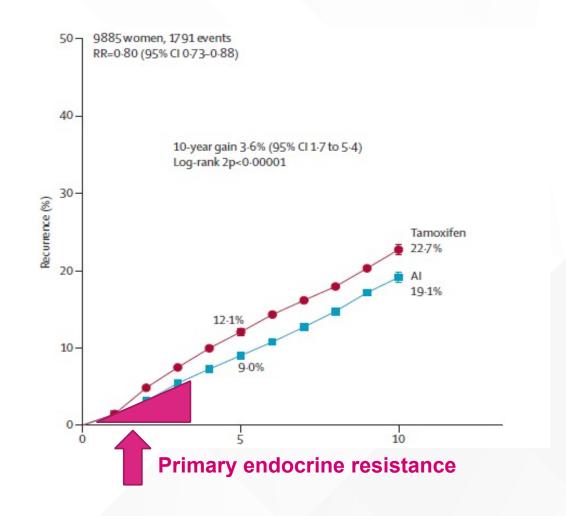
- Biomarker testing for tumor ER, PR, and HER2 status is recommended for all patients
 - Ki-67 testing recently removed as a recommendation for HR+/HER2- patients who are being considered for abemaciclib
 - Methods for testing include: PCR, NGS, FISH, and IHC
- Genetic counseling and testing is recommended for patients considered to be at high risk for hereditary BC, who have TNBC, or who may be candidates for adjuvant olaparib

- Molecular profiling tests help to determine whether to add chemotherapy to ET for patients with HR+/HER2- eBC
- Gene expression assays critical in determining need for adjuvant chemotherapy:
 - The 21-gene assay (Oncotype Dx) is preferred by the NCCN for prognosis and prediction of chemotherapy benefit
 - Other prognostic assays: 70-gene (MammaPrint), 50-gene (Prosigna), 12gene (EndoPredict), and Breast Cancer Index (BCI)

Gradishar WJ, et al. NCCN Guidelines. Breast Cancer. Version 2.2024. Markopoulos C, et al. *Eur J Surg Oncol*. 2020;46(4 Pt A):656-666. Blanchette P, et al. *Curr Oncol*. 2022;29(4):2599-2615.

BC, breast cancer; eBC, early breast cancer; ER, estrogen receptor; ET, endocrine therapy; FISH, flourescence in situ hybridization; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; IHC, immunohistochemistry; NCCN, National Comprehensive Cancer Network; NGS, next-generation sequencing; PCR, polymerase chain reaction; PR, progesterone receptor; TNBC, triple-negative breast cancer.

Aligning Clinical Practice With the Latest Clinical Evidence in Treating HR+/HER2- eBC


Endocrine Therapy in ER+ EBC

Endocrine Therapy

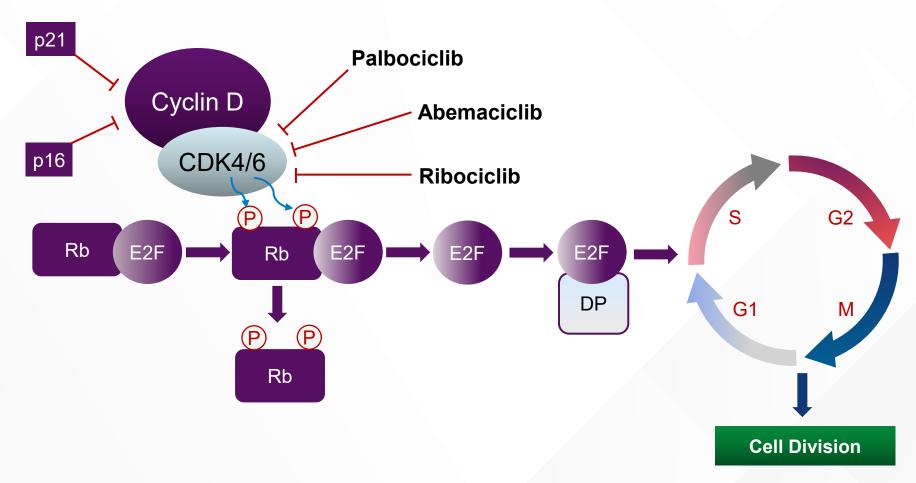
- Tamoxifen, aromatase inhibitors
- Ovarian suppression (LHRH analogues) in high-risk premenopausal women
- Extended adjuvant therapy (10 years vs. 5 years)

Unmet Need

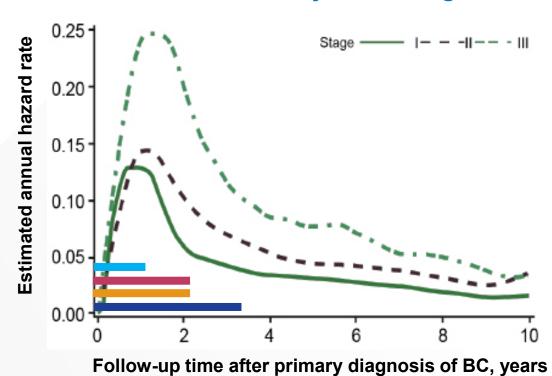
- Understanding who does/does not need adjuvant chemotherapy
- Identifying those with primary endocrine resistance HR-positive BC, and preventing or delaying recurrence with additional therapy

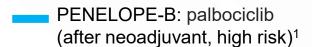
Guidelines Overview: Adjuvant Endocrine Therapy

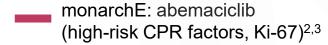
- Adjuvant ET for 5 years results in a substantial reduction in the risk of local recurrence, contralateral BC, distant recurrence, and risk of death
- The addition of chemotherapy to adjuvant ET is recommended in certain patients with HR+/HER2- breast cancer based on recurrence risk (Oncotype Dx 21-gene assay)
 - Postmenopausal patients with pT1-3, and pN0 and pN1 (1-3 positive nodes) tumors and a risk score ≥26
 - Premenopausal patients with pN0 tumors and a risk score ≥26
 - Premenopausal patients with pT1-3 and pN1 (1-3 positive nodes) tumors and a risk score ≥26

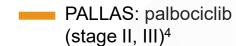

- The NCCN recommends considering the addition of a CDK4/6 inhibitor, abemaciclib, to systemic adjuvant ET for certain HR+/HER2-, high-risk eBC patients
 - ≥4 positive lymph nodes (confirmed preoperatively and/or at surgery)
 or
 - 1-3 positive lymph nodes with either grade
 3 disease or tumor size ≥ 5cm (on preoperative imaging and/or at surgery)
- Select patients may also be eligible for adjuvant abemaciclib after preoperative systemic therapy

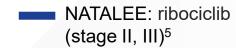
Efficacy Data of CDK4/6 Inhibitors in HR+/HER2- eBC

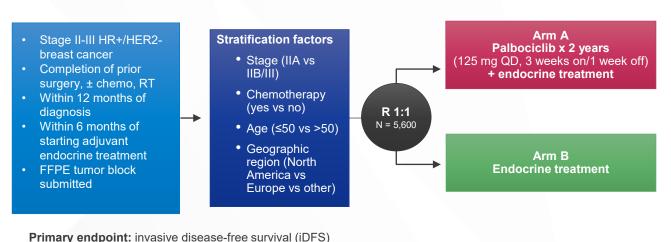

Inhibition of CDK4/6 is Critical to Improving Outcomes in ER+ Breast Cancer

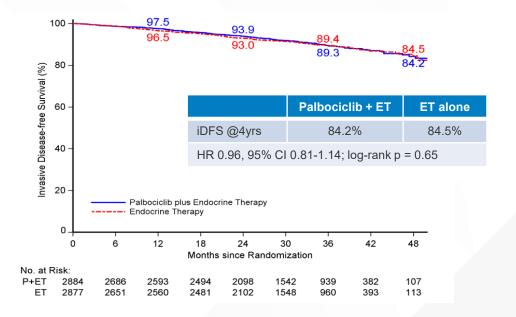





CDK4/6 Inhibitors for High-Risk, HR+ eBC

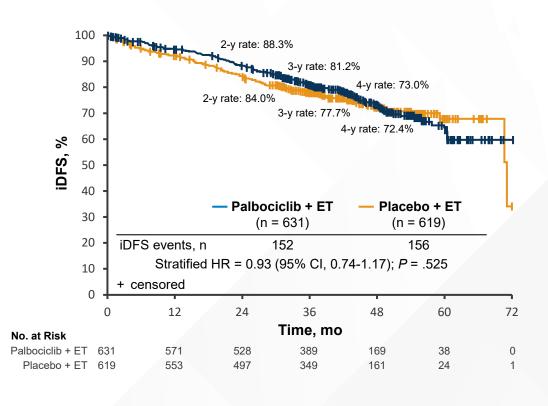

Risk of recurrence by tumor stage

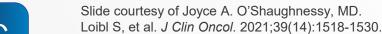


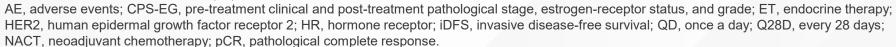


PALLAS Primary Endpoint: iDFS

- rimary enupoint. Invasive disease-free survivar (IDF5)
 - PALLAS: Palbociclib
- There were 253 vs 263 iDFS events in the palbociclib + ET vs ET only arms, but no difference in event categories, including distant recurrences, second primaries, local, regional, contralateral, or deaths without recurrence
- At a median follow-up of 31 months, no significant difference in 4-year iDFS was observed
- Most common AEs in palbociclib + ET arm: neutropenia, leukopenia, fatigue
- Anemia, thrombocytopenia, alopecia, and upper respiratory tract infections also more common in Palbociclib + ET arm
- 13.0% of patients in palbociclib + ET arm experienced ≥1 SAE (versus 7.9% in ET arm)
- No deaths related to study treatment in either arm

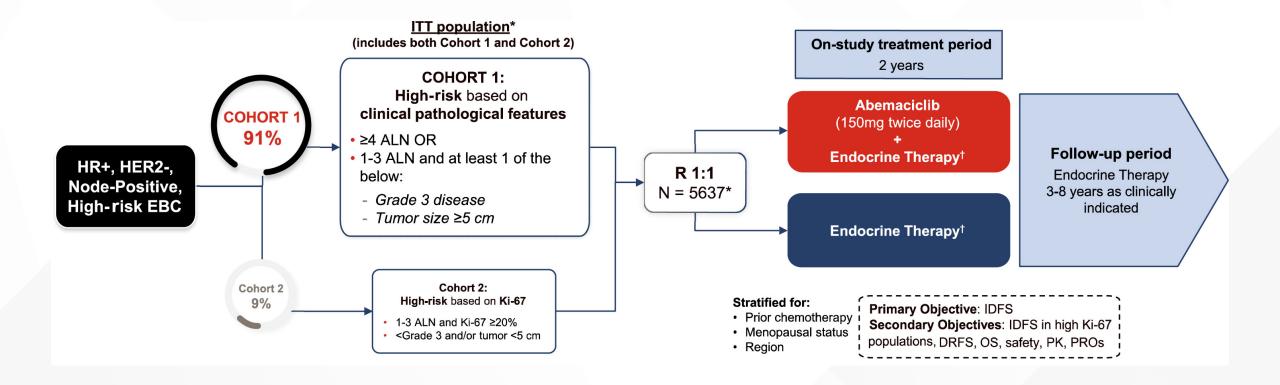

PENELOPE-B: Palbociclib + Endocrine Therapy in HR+/HER2-With Residual Disease After Neoadjuvant Chemo + Surgery


Study Design

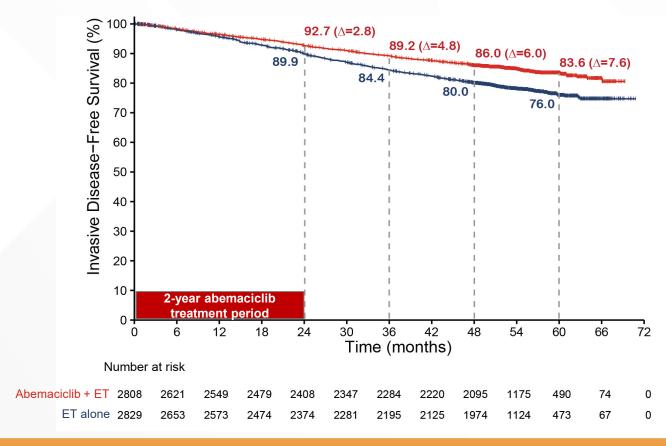

N=1250 Stratification factors HR+/HER2- breast cancer Nodal status: vpN 0-1 vs vpN2-3 no pCR after NACT Age: ≤50 vs >50 yrs CPS-EG score ≥3 or ≥2 with ypN+ Ki-67: >15% vs ≤ 15% Region: Asian vs non Asian **Primary Endpoint: iDFS** CPS-EG Score: ≥3 vs 2 and ypN+ **Palbociclib** 125 ma QD d1-21, Q28D for 13 cycles Neoadjuvant Surgery +/chemotherapy radiotherapy Placebo d1-21, Q28D for 13 cycles

- The most frequent AEs in the palbociclib arm were hematologic in nature (any grade: neutropenia 95.7%, leukopenia 99.2%, thrombocytopenia 56.6%, anemia 73.9%)
- Most common related serious adverse events were infections and vascular disorders
- 2 deaths in palbociclib arm (not related to study drug), 6 deaths in placebo arm

IDFSMedian follow-up 42.8 mo



monarchE Study Design (NCT03155997)



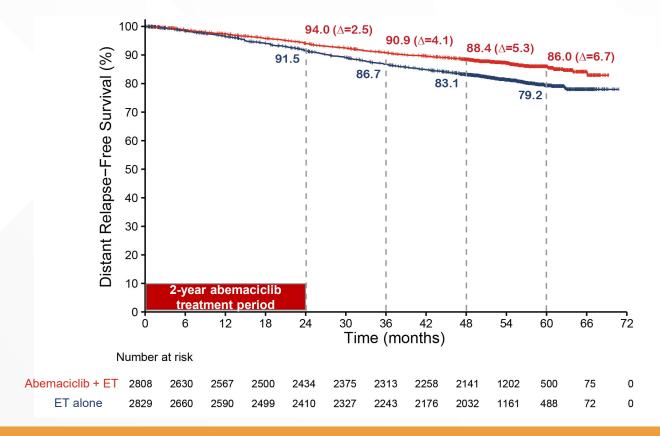
*Recruitment from July 2017 to August 2019.

†Endocrine therapy of physician's choice [eg, aromatase inhibitors, tamoxifen, GnRH agonist]. Harbeck N, et al. Adjuvant ESMO 2023. Abstract LBA17.

ALN, axillary lymph node; DRFS, distant relapse-free survival; EBC, early breast cancer; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; iDFS, invasive disease-free survival; ITT, intention-to-treat; OS, overall survival; PK, pharmacokinetics; PRO, patient-reported outcome.

monarchE: Sustained iDFS Benefit in ITT

32% reduction in the risk of developing an iDFS event
The KM curves continue to separate and the absolute difference in iDFS rates between arms was 7.6% at 5 years


monarchE: Consistent iDFS Benefit Observed in Selected Subgroups*

					\rightarrow	
				Favors Abemaciclib + ET Favors ET alone	LID (050/, CI)	l-4
						Interaction p-valu
2808	407	2829	585	⊢	0.680 (0.599, 0.772)	
2371 437	325 82	2416 413	485 100	 	0.658 (0.571, 0.757) 0.797 (0.595, 1.067)	
1221 1587	150 257	1232 1597	237 348		0.597 (0.487, 0.733) 0.746 (0.635, 0.876)	
1039 1642	202 183	1048 1647	297 260	 	0.649 (0.543, 0.776) 0.694 (0.574, 0.838)	
2405 401	337 70	2369 455	489 95	-	0.654 (0.569, 0.751) 0.869 (0.638, 1.184)	
781 1371 607	82 214 102	767 1419 610	150 284 144		0.517 (0.395, 0.677) 0.771 (0.646, 0.920) 0.676 (0.525, 0.871)	
es 1118 1107 575	136 142 127	1142 1126 554	182 231 172		0.750 (0.601, 0.937) 0.614 (0.498, 0.757) 0.661 (0.526, 0.832)	
209 1377 1086	24 181 185	216 1395 1064	35 268 240		0.698 (0.415, 1.174) 0.665 (0.551, 0.803) 0.737 (0.608, 0.893)	
716 2078	79 326	740 2077	106 476		0.764 (0.571, 1.022) 0.661 (0.574, 0.761)	
857 1931	111 293	898 1887	196 386		0.561 (0.445, 0.708) 0.738 (0.634, 0.859)	
	No. 2808 2371 437 1221 1587 1039 1642 2405 401 781 1371 607 es 1118 1107 575 209 1377 1086 716 2078	2808 407 2371 325 437 82 1221 150 1587 257 1039 202 1642 183 2405 337 401 70 781 82 1371 214 607 102 es 1118 136 1107 142 575 127 209 24 1377 181 1086 185 716 79 2078 326 857 111	No. Events No. 2808 407 2829 2371 325 2416 437 82 413 1221 150 1232 1587 257 1597 1039 202 1048 1642 183 1647 2405 337 2369 401 70 455 781 82 767 1371 214 1419 607 102 610 es 1118 136 1142 1107 142 1126 575 127 554 209 24 216 1377 181 1395 1086 185 1064 716 79 740 2078 326 2077 857 111 898	Abemaciclib + ET EVents No. Events 2808 407 2829 585 2371 325 2416 485 437 82 413 100 1221 150 1232 237 1587 257 1597 348 1039 202 1048 297 1642 183 1647 260 2405 337 2369 489 401 70 455 95 781 82 767 150 1371 214 1419 284 607 102 610 144 es 1118 136 1142 182 1107 142 1126 231 575 127 554 172 209 24 216 35 1377 181 1395 268 1086 185 1064 240 716	No. Events No. Events 2808 407 2829 585 Image: Control of the contro	Abemacicilib + ET ET Favors Abemaciclib + ET Favors ET alone No. Events No. Events 2808 407 2829 585 → 0.680 (0.599, 0.772) 2371 325 2416 485 → 0.797 (0.595, 1.067) 437 82 413 100 0.597 (0.487, 0.733) 0.797 (0.595, 1.067) 1221 150 1232 237 → 0.597 (0.487, 0.733) 0.746 (0.635, 0.876) 1039 202 1048 297 → 0.694 (0.574, 0.838) 2405 337 2369 489 → 0.694 (0.574, 0.838) 2405 337 2369 489 → 0.694 (0.574, 0.838) 781 82 767 150 → 0.517 (0.395, 0.677) 1371 214 1419 284 → 0.677 (0.595, 0.871) es 1118 136 1142 182 → 0.670 (0.525, 0.871) 209 24 216 35

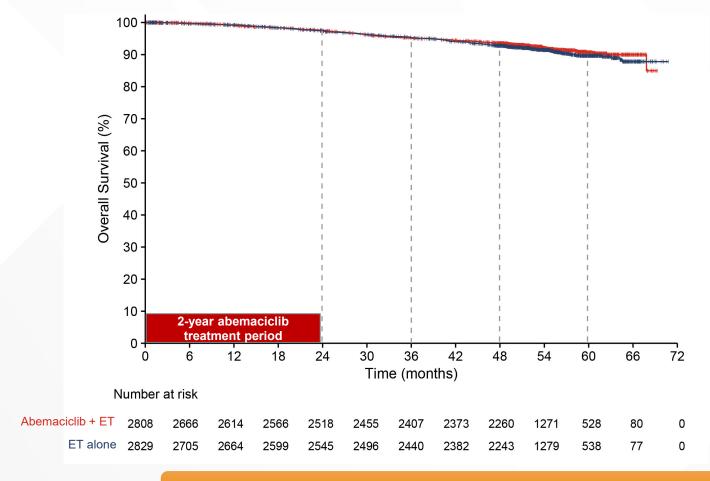
*Region of enrollment and Progesterone status data not shown Harbeck N, et al. Adjuvant ESMO 2023. Abstract LBA17.

monarchE: Sustained DRFS Benefit in ITT

Number of DRFS events

Abemaciclib + ET ET Alone

345 501


HR (95% CI): 0.675 (0.588, 0.774)

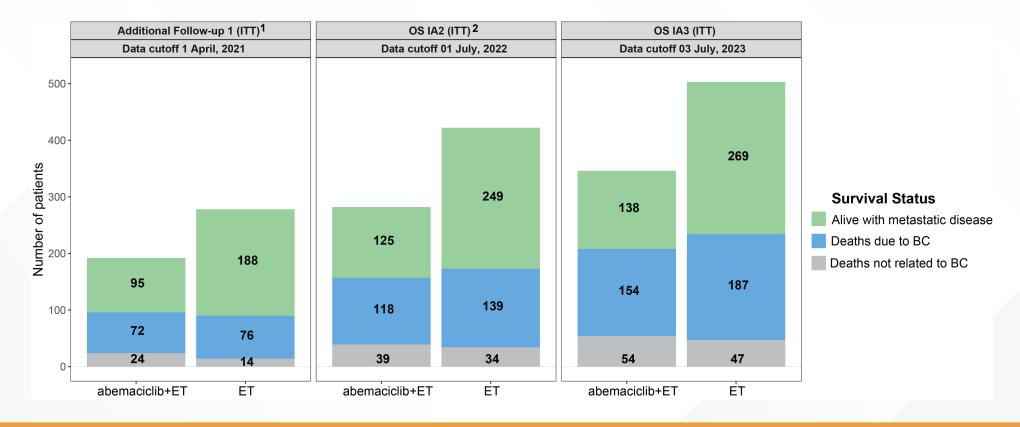
HR (95% CI): 0.675 (0.588, 0.774) Nominal p <0.001

32.5% reduction in the risk of developing a DRFS event
The KM curves continue to separate and the absolute difference in DRFS rates between arms was 6.7% at 5 years

monarchE: Fewer Deaths in the ITT Abemaciclib Arm

Number of OS events

Abemaciclib + ET E⁻
208


ET Alone 234

HR (95% CI): 0.903 (0.749, 1.088) p=0.284

At OS IA3 statistical significance was not reached for OS

monarchE: Fewer Patients with Metastatic Disease in the Abemaciclib Arm

The imbalance of incurable metastatic recurrence continues to be substantial at OS IA3

monarchE: Efficacy Outcomes by Cohorts

	Cohort 1		Cohort 2		
	Abemaciclib + ET	ET	Abemaciclib + ET	ET	
	n=2555	n= 2565	n=253	n=264	
iDFS					
Number of events, n	382	553	25	32	
HR (95% CI)	0.670 (0.5	588, 0.764)	0.827 (0.484, 1.414)		
Nominal p-value	p<0.001		p=0.488		
5-year iDFS rate, % (95% CI)	83.2 (81.5, 84.7)	75.3 (73.4, 77.2)	NR	NR	
DRFS					
Number of events, n	325	477	20	24	
HR (95% CI)	0.665 (0.5	577, 0.765)	0.892 (0.485, 1.643)		
Nominal p-value	p<0	.001	p=0.714		
5-year DRFS rate, % (95% CI)	85.6 (84.0, 87.1)	78.5 (76.6, 80.3)	NR	NR	
OS (immature)					
Number of events, n	197	223	11	11	
HR (95% CI)	0.894 (0.738, 1.084) 1.078 (0.465, 2		165, 2.501)		
Nominal p-value	p=0	.254	p=0.861		

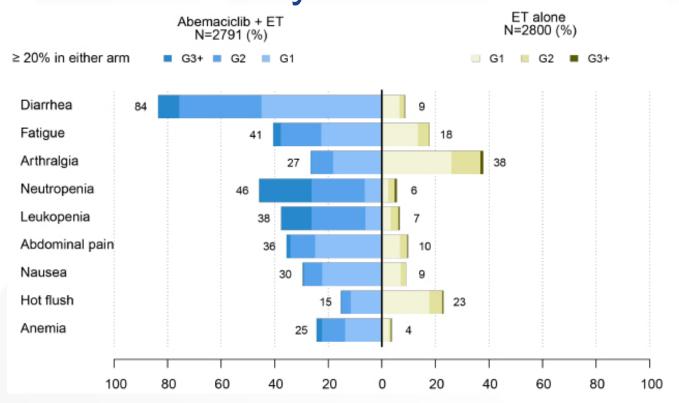
Treatment benefit in Cohort 1 was consistent with ITT. Cohort 2 data remain immature

monarchE: Efficacy Outcomes by Ki-67 Index in Cohort 1

	Cohort 1 Ki-67 High		Cohort 1 Ki-67 Low			
	Abemaciclib + ET	ET	Abemaciclib + ET	ET		
	n=1017	n= 986	n=946	n=968		
iDFS						
Number of events, n	176	251	116	171		
HR (95% CI)	0.643 (0.53	30, 0.781)	0.662 (0.522, 0.839)			
Nominal p-value	p<0.	001	p<0.001			
5-year iDFS rate, % (95% CI)	81.0 (78.1, 83.4)	72.0 (68.7, 75.0)	86.3 (83.6, 88.6)	80.2 (77.2, 82.9)		
DRFS						
Number of events, n	152	221	96	143		
HR (95% CI)	0.634 (0.53	15, 0.781)	0.664 (0.512, 0.861)			
Nominal p-value	p<0.001 p=0.002		.002			
5-year DRFS rate, % (95% CI)	83.4 (80.7, 85.8)	75.2 (72.1, 78.0)	88.6 (86.1, 90.7)	83.5 (80.7, 86.0)		
OS (immature)	OS (immature)					
Number of events, n	92	121	56	62		
HR (95% CI)	0.717 (0.546, 0.941)		0.911 (0.633, 1.309)			
Nominal p-value	p=0.016		p=0.613			

Within Cohort 1, similar abemaciclib treatment effects were observed regardless of Ki-67 index

Current Labels and Guidelines for Abemaciclib in High-Risk Early Breast Cancer


	FDA ¹	ASCO ²	NCCN ³	EMA ⁴	ESMO ⁵
Treatment/ Duration	Abemaciclib + ET approved for 2 years	Abemaciclib + ET may be offered for 2 years + ET for ≥5 years	Abemaciclib + ET can be considered for 2 years + ET for ≥5 years	Abemaciclib + ET is indicated	Abemaciclib + ET could be considered for use in high-risk groups, when approved
Patient Population	HR+/HER2-, node-positive eBC at high risk of recurrence	Resected HR+/HER2-, node-positive EBC with high risk of recurrence	HR+/HER2− high-risk breast cancer	HR+/HER2-, node-positive EBC at high risk of recurrence	HR+/HER2- high-risk breast cancer
High-risk Criteria	 • ≥4 positive ALNs, or • 1 to 3 positive ALNs and at least one: • Grade 3 • Tumor ≥5 cm Previous requirement for a Ki-67 score >20% has been removed 	 ≥ 4 positive ALNs, or 1 to 3 positive ALNs and one of the following: Grade 3 Tumor ≥5 cm Ki-67 ≥20% 		 ≥4 positive ALNs, or 1 to 3 positive ALNs and Grade 3 Tumor ≥5 cm 	one of the following:

^{1.} FDA.gov. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-expands-early-breast-cancer-indication-abemaciclib-endocrine-therapy. 2. Giordano SH, et al; Optimal Adjuvant Chemotherapy and Targeted Therapy Guideline Expert Panel. *J Clin Oncol.* 2022;40(3):307-309. 3. Gradishar WJ, et al. NCCN Guidelines. Breast Cancer. Version 2.2024. 4. European Medicines Agency. Assessment report. Abemaciclib. https://www.ema.europa.eu/en/documents/variation-report/verzenios-h-c-004302-ii-0013-epar-assessment-report-variation_en.pdf. 5. Loibl S, et al. *Ann Oncol.* 2024;35(2):159-182. ALN, axillary lymph node; ASCO, American Society of Clinical Oncology; eBC, early breast cancer; EMA, European Medicines Agency; ESMO, European Society for Medical Oncology; ET, endocrine therapy; FDA, U.S. Food and

Drug Administration; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; NCCN, National Comprehensive Cancer Network.

monarchE: Safety Findings Consistent With Previous Analyses

Median duration of abemaciclib: 23.7 months

Other events of interest, any grade	Abemaciclib + ET N = 2791, %	ET Alone N = 2800, %
VTE	2.5	0.7
PE	1.0	0.1
ILD	3.3	1.3

Abemaciclib dose adjustments due to AEs

Dose holds: 61.7%

Dose reductions: 43.6%

Discontinuations: 18.5% [8.9% after dose reduction]

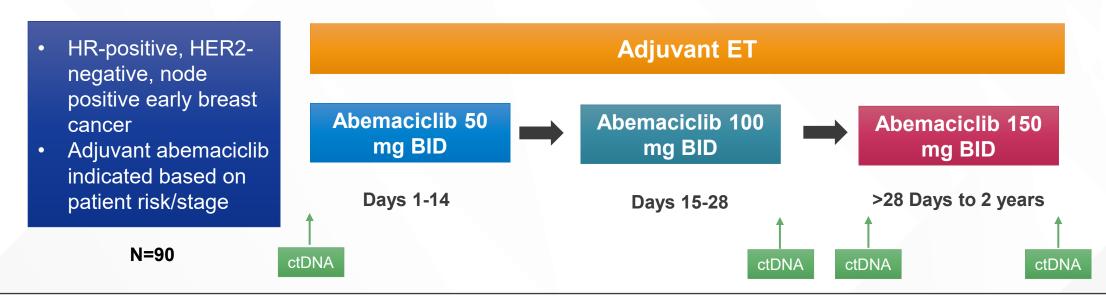
All patients who received at least one dose of study treatment were included in the safety population. The safety profile of abemaciclib is considered manageable and acceptable for this high-risk population.

monarchE: Dose Adjustments Were More Common in Older Patients

	Abemaciclib + ET				
	Overall <65 ≥65*				
Abemaciclib dose adjustments due to AEs, %	n=2791	n=2361	n=430		
Interruptions	62	60	68		
Reductions	44	42	55		
Discontinuations	18	15	38		
Discontinuations without prior dose reductions	10	8	19		

Adverse event rates were similar in older vs younger patients Patients ≥75 years had more grade 3 diarrhea and grade 2/3 fatigue

Abemaciclib Efficacy Is Not Compromised By Dose Reductions


Time dependent Cox model in patients treated with abemaciclib

Efficacy Endpoint	HR (95% CI) Staying at full dose vs Being reduced to lower doses
ITT	
iDFS	0.905 (0.727, 1.125)
DRFS	0.942 (0.742, 1.195)
Cohort 1	
iDFS	0.899 (0.718, 1.125)
DRFS	0.958 (0.750, 1.223)

Abemaciclib benefit was similar when given at the full dose of 150 mg compared to reduced doses of 100 mg or 50 mg

TRADE: A Phase 2, Single Arm, Dose-Escalation Trial of Adjuvant Abemaciclib and Endocrine Therapy

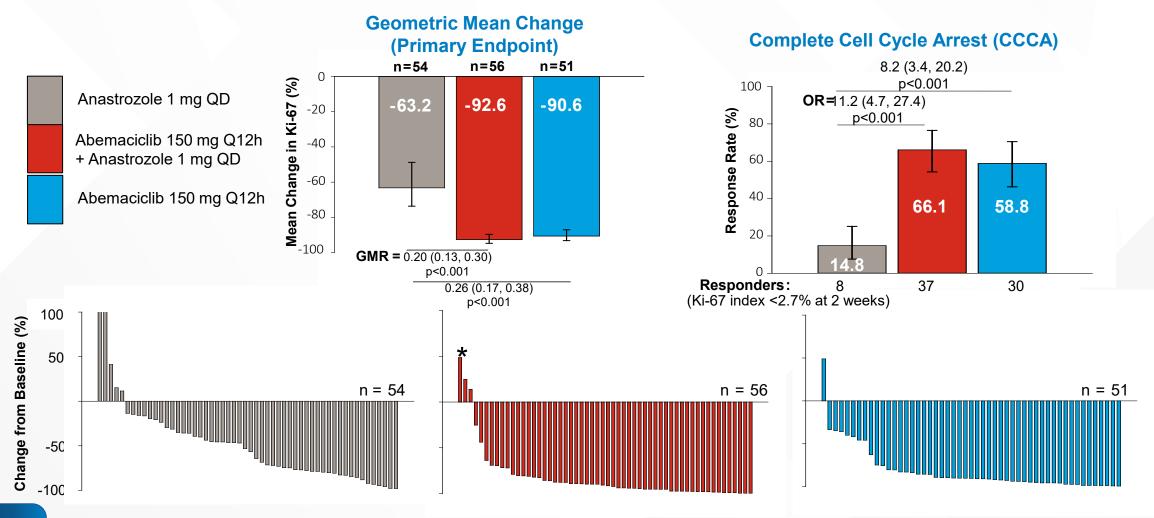
Primary endpoint: 12-week Composite Adverse Rate:

Discontinuation of abemaciclib for any reason, and/or need to dose reduce, and/or inability to reach-maintain the full dose. **Secondary endpoints:** TRAEs, discontinuation/hold rates, incidence of Grade ≥2 diarrhea, adherence to therapy, dose intensity, QOL

Correlative endpoints: serial ctDNA, PBMC, stool studies

What ET Should Be Combined With Abemacicilib?

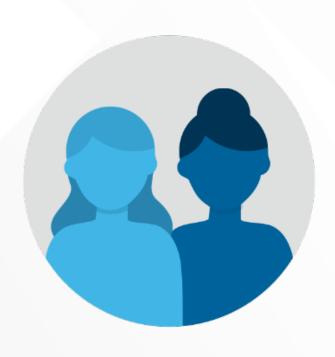
Venous thromboembolic events (VTE)


	Abemaciclib + ET (N=2791)			1)
Event term, n (%)	Any Grade	G1	G2	G≥3
VTE	67 (2.4)	3 (0.1)	27 (1.0)	37 (1.3)
Peª	26 (0.9)	0	0	26 (0.9)
Serious VTE	33 (1.2)			
VTE by First ET	Abemaciclib + ET			
Tamoxifen (Nx=857 [abemaciclib + ET]; 898 [ET alone])	35 (4.1)	2 (0.2)	14 (1.6)	19 (2.2)
Aromatase Inhibitors (Nx=1929 [abemaciclib + ET]; 1892 [ET alone])	32 (1.7)	1 (0.1)	13 (0.7)	18 (0.9)
Time to onset of first VTE event (days); median (range) 182.0 (8.0			- 714.0)	
Discontinuation due to VTE	13 (0.5)			

Use abemaciclib + tamoxifen with caution in patients with risk factors for VTE

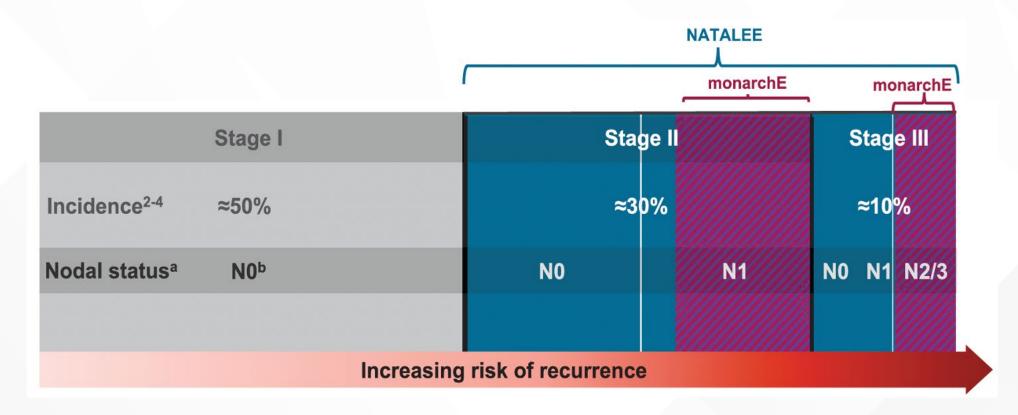
TAMOXIFEN → 4.1% any-grade VTE AI → 1.7% any-grade VTE

What About Patients Who Need Preop Therapy? neoMONARCH: Ki-67 Expression and Response at Wk 2


What About Patients With gBRCAm?

Prioritize adjuvant olaparib (1 year)

Consider sequential administration of abemaciclib after olaparib in patients with the highest risk of relapse


Which Patients Should Be Considered for Adjuvant Abemaciclib with N+, High-Risk Early-Stage BC?

- ≥4 positive lymph nodes (any T, grade)
- T3, N1-3 (any grade)
- ▼ T1-2, N1-3, AND grade 3

NATALEE: Potential for Expanding Adjuvant CDK4/6i Use

NATALEE: Study Design: Unique Features

R1:1

- Adult patients with HR+/HER2- EBC
- Prior ET allowed up to 12 months
- Anatomic stage IIA
 - **N0** with:
 - > Grade 2 and evidence of high risk:
 - Ki-67 ≥20%
 - Oncotype DX Breast Recurrence Score ≥26 or
 - High risk via genomic risk profiling
 - > Grade 3
 - N1
- Anatomic stage IIB
 - N0 or N1
- Anatomic stage III
 - N0, N1, N2, or N3

N = 5,101

Randomization stratification Anatomical stage: || vs || |

Menopausal status: men and premenopausal women vs postmenopausal women

Receipt of prior (neo)adjuvant chemotherapy: yes vs no

Geographic location: North America/Western Europe/Oceania vs rest of world

Ribociclib

400 mg/day 3 weeks on/1 week off for 3 y

NSAI

Letrozole 2.5 mg/day or anastrozole 1 mg/day for ≥5 y

+ goserelin in men and premenopausal women

NSAI

Letrozole 2.5 mg/day or anastrozole 1 mg/day for ≥5 y

+ goserelin in men and premenopausal women

Primary Endpoint

- iDFS using STEEP criteria

Secondary Endpoints

- Recurrence-free survival
- Distant disease-free survival
- OS
- PROs
- Safety and tolerability
- PK

Exploratory Endpoints

- Locoregional recurrencefree survival
- Gene expression and alterations in tumor ctDNA/ctRNA samples

Hortobagyi G, et al. SABCS 2023. Abstract GS03-03.

1. ClinicalTrials.gov. NCT03701334. 2. Slamon D, et al. ASCO 2023. Abstract LBA500.

ctDNA/RNA, circulating tumor DNA/RNA; EBC, early breast cancer; ET, endocrine therapy; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; iDFS, invasive disease-free survival; N, node; NSAI, nonsteroidal aromatase inhibitor; OS, overall survival; PK, pharmacokinetics; PRO, patient-reported outcomes; R, randomized; STEEP, Standardized Definitions for Efficacy End Points in Adjuvant Breast Cancer Trials; y, years.

NATALEE: Study Design: Unique Features

- Adult patients with HR+/HER2-EBC
- Prior ET allowed up to 12 months

Anatomical stage IIA

- **N0** with:
 - > Grade 2 and evidence of high risk:
 - Ki-67 ≥20%
 - Oncotype DX Breast Recurrence Score or
 - High risk via genomic risk profiling
 - > Grade 3
- N1

Anatomical stage IIB

- N0 or N1

Anatomical stage III

- N0, N1, N2, or N3

N = 5,101

Randomization stratification Anatomical stage: || vs |||

Menopausal status: men and premenopausal women vs postmenopausal women

Receipt of prior (neo)adjuvant chemotherapy: yes vs no

Geographic location: North America/Western Europe/Oceania vs rest of world

Ribociclib

400 mg/day 3 weeks on/1 week off for 3 y

Rationale for Broad Population of Patients

Patients with stage II and III
HR+/HER2- EBC, including
those with no nodal
involvement, are at risk of
disease recurrence for
decades after initial diagnosis

premenopausal women

Primary Endpoint

- iDFS using STEEP criteria

Secondary Endpoints

- Recurrence-free survival
- Distant disease-free survival
- OS
- PROs
- Safety and tolerability
- PK

Exploratory Endpoints

- Locoregional recurrencefree survival
- Gene expression and alterations in tumor ctDNA/ctRNA samples

Hortobagyi G, et al. SABCS 2023. Abstract GS03-03.

1. ClinicalTrials.gov. NCT03701334. 2. Slamon D, et al. ASCO 2023. Abstract LBA500.

ctDNA/RNA, circulating tumor DNA/RNA; EBC, early breast cancer; ET, endocrine therapy; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; iDFS, invasive disease-free survival; N, node; NSAI, nonsteroidal aromatase inhibitor; OS, overall survival; PK, pharmacokinetics; PRO, patient-reported outcome; R, randomized; STEEP, Standardized Definitions for Efficacy End Points in Adjuvant Breast Cancer Trials; y, years.

NATALEE: Study Design: Unique Features

- Adult patients with HR+/HER2-EBC
- Prior ET allowed up to 12 months

Anatomical stage IIA

- **N0** with:
 - > Grade 2 and evidence of high risk:
 - Ki-67 ≥20%
 - Oncotype DX Breast Recurrence Score or
 - High risk via genomic risk profiling
 - > Grade 3
- N1

Anatomical stage IIB

- N0 or N1

Anatomical stage III

- N0, N1, N2, or N3

N = 5,101

Randomization stratification Anatomical stage: || vs |||

Menopausal status: men and premenopausal women vs postmenopausal women

Receipt of prior (neo)adjuvant chemotherapy: yes vs no

Geographic location: North America/Western Europe/Oceania vs rest of world

Ribociclib

400 mg/day

3 weeks on/1 week off for 3 y

Rationale for Broad Population of Patients

Patients with stage II and III
HR+/HER2- EBC, including
those with no nodal
involvement, are at risk of
disease recurrence for
decades after initial diagnosis

premenopausal women

Primary Endpoint

Rationale for 400 mg RIBOCICLIB

To improve tolerability while maintaining efficacy

Survivai

- OS
- PROs
- Safety and tolerability
- PK

Exploratory Endpoints

- Locoregional recurrencefree survival
- Gene expression and alterations in tumor ctDNA/ctRNA samples

Hortobagyi G, et al. SABCS 2023. Abstract GS03-03.

1. ClinicalTrials.gov. NCT03701334. 2. Slamon D, et al. ASCO 2023. Abstract LBA500.

ctDNA/RNA, circulating tumor DNA/RNA; EBC, early breast cancer; ET, endocrine therapy; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; iDFS, invasive disease-free survival; N, node; NSAI, nonsteroidal aromatase inhibitor; OS, overall survival; PK, pharmacokinetics; PRO, patient-reported outcome; R, randomized; STEEP, Standardized Definitions for Efficacy End Points in Adjuvant Breast Cancer Trials; y, years.

NATALEE: Study Design: Unique Features

- Adult patients with HR+/HER2-EBC
- Prior ET allowed up to 12 months

Anatomical stage IIA

- **N0** with:
 - > Grade 2 and evidence of high risk:
 - Ki-67 ≥20%
 - Oncotype DX Breast Recurrence Score or
 - High risk via genomic risk profiling
 - > Grade 3
- N1

Anatomical stage IIB

- N0 or N1

Anatomical stage III

- N0, N1, N2, or N3

N = 5,101

Randomization stratification Anatomical stage: || vs |||

Menopausal status: men and premenopausal women vs postmenopausal women

Receipt of prior (neo)adjuvant chemotherapy: yes vs no

Geographic location: North America/Western Europe/Oceania vs rest of world

Ribociclib

400 mg/day 3 weeks on/1 week off for

for 3 y

Rationale for Broad Population of Patients

Patients with stage II and III
HR+/HER2- EBC, including
those with no nodal
involvement, are at risk of
disease recurrence for
decades after initial diagnosis

premenopausal women

Primary Endpoint

Rationale for 400 mg

To improve tolerability while maintaining efficacy

Survivai

Rationale for 3-year Treatment Duration

Extended duration of treatment is crucial to prolong cell cycle arrest and drive more tumor cells into irreversible senescence

 Gene expression and alterations in tumor ctDNA/ctRNA samples

Hortobagyi G, et al. SABCS 2023. Abstract GS03-03.

1. ClinicalTrials.gov. NCT03701334. 2. Slamon D, et al. ASCO 2023. Abstract LBA500.

ctDNA/RNA, circulating tumor DNA/RNA; EBC, early breast cancer; ET, endocrine therapy; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; iDFS, invasive disease-free survival; N, node; NSAI, nonsteroidal aromatase inhibitor; OS, overall survival; PK, pharmacokinetics; PRO, patient-reported outcome; R, randomized; STEEP, Standardized Definitions for Efficacy End Points in Adjuvant Breast Cancer Trials; y, years.

NATALEE and monarchE: Difference in Patient Populations

NATALEE (N=5,101)			monarchE (N=5,637)		
	ribociclib+ET (N= 2549)	ET (N= 2552)		Abema + ET (N= 2808)	ET (N=2879)
Stage II Stage III	1011 (40%) 1528 (60%)	1033 (40%) 1512 (59%)	Stage II (derived) Stage III (derived)	25.5% 73.9%	26.2% 73.4%
Prior chemo (neo) adjuvant Yes	2249 (88%)	2245 (88%)	Prior chemo Neoadjuvant Adjuvant None	1025 (36.5%) 1631 (58.1%) 152 (5.4%)	1031(36.4%) 1633 (57.7%) 165 (5.8%)
Premenopausal/ Men Postmenopausal	1126 (44%) 1423 (56%)	1132 (44%) 1420 (56%)	Premenopausal Postmenopausal	1221 (43.5%) 1587 (56.5%)	1232 (43.5%) 1597 (56.5%)
Age, median (min-max)	52 (24-90)	52 (24-89)	Age, (median IQR), years <65 ≥65	51 (44-60) 2371 (84.4%) 437 (15.6%)	51 (44-60) 2416 (85.4%) 413 (14.6%)
ALN NX N0 N1 1-3 N2, N3 ≥4	272 (11%) 694 (27%) 1050 (41%) 483 (19%)	264 (10%) 737 (29%) 1049 (41%) 467 (18%)	NZ. N3 ≥4	7 (0.2%) 1118 (39.8%) 1682 (59.9%)	7 (0.2%) 1142 (40.4%) 1680 (59.4%)
ECOG PS 0 1	2106 (83%) 440 (17%)	2132 (84%) 418 (16%)	ECOG PS 0 1	2405 (85.7%) 401 (14.3%)	2369 (83.8%) 455 (16.1%)

NATALEE: Patient Disposition

Second Interim Efficacy Analysis

Data cutoff: January 11, 2023

iDFS events: n=426

Final iDFS Analysis

Data cutoff: July 21, 2023

iDFS events: n=509

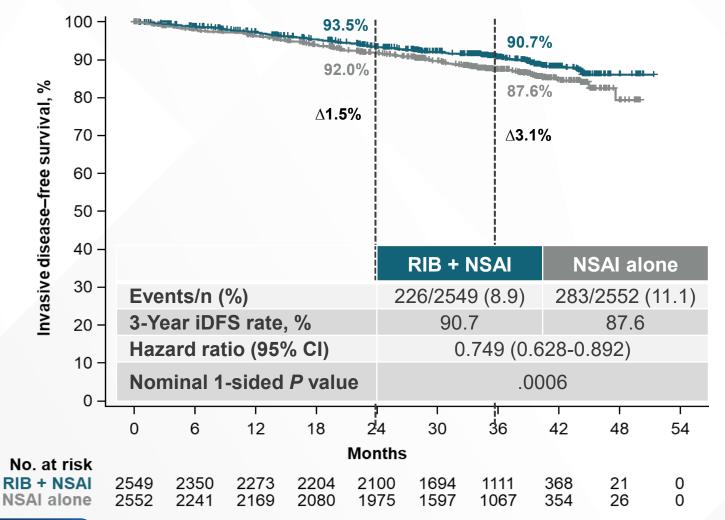
Ribociclib + NSAI, n=2549

- NSAI ongoing: 1984 (77.8%)
 - RIB ongoing: 1147 (45.0%)
- Stopped RIB: 1377 (54.0%)
 - Completed 3 years: 515 (20.2%)
 - Early discontinuation: 862 (33.8%)
 - Discontinued due to AEs: 477 (18.7%)

Ribociclib + NSAI, n=2549

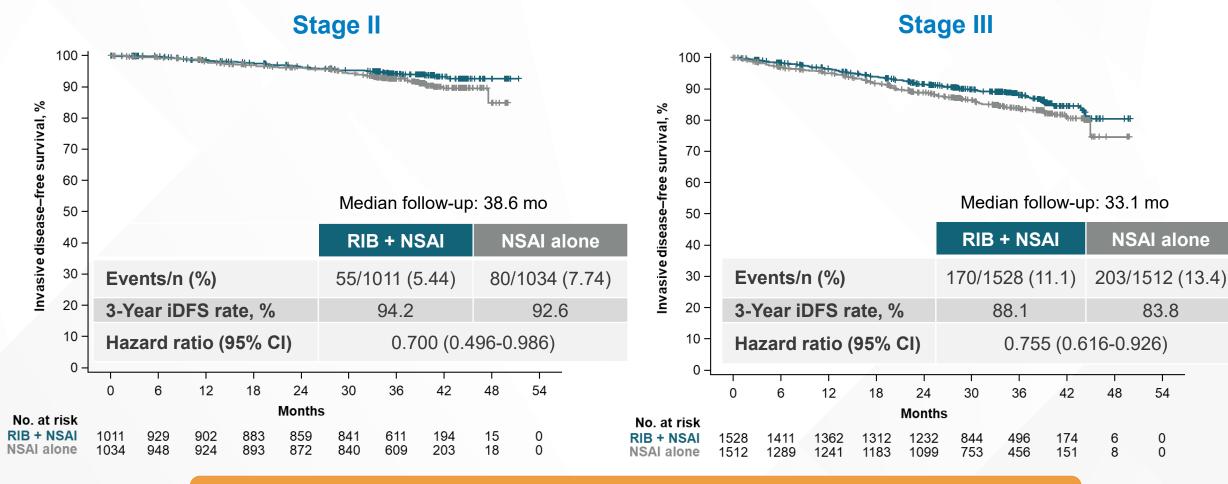
- NSAI ongoing: 1914 (75.1%)
 - RIB ongoing: 528 (20.7%)
- Stopped RIB: 1996 (78.3%)
 - Completed 3 years: 1091 (42.8%)
 - Early discontinuation: 905 (35.5%)
 - Discontinued due to AEs: 498 (19.5%)

NSAI Alone, n=2552

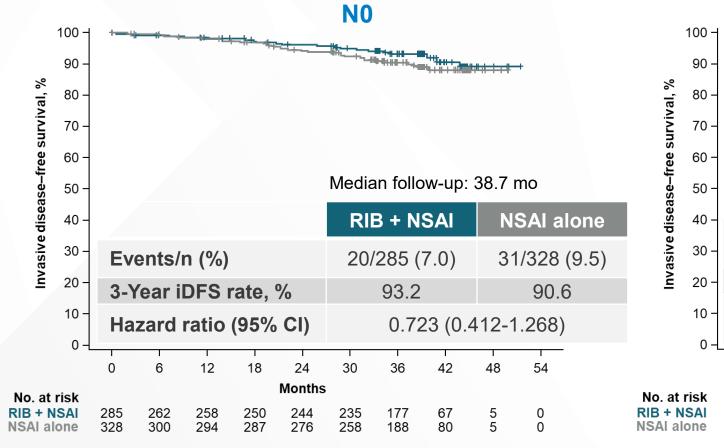

- NSAI ongoing: 1826 (71.6%)
- Discontinued NSAI: 617 (24.2%)

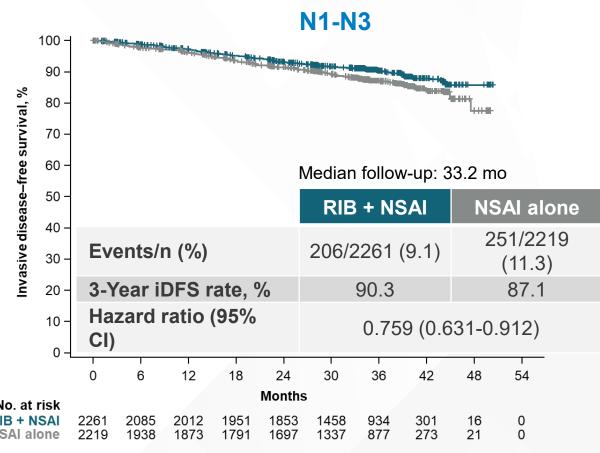
NSAI Alone, n=2552

- NSAI ongoing: 1748 (68.5%)
- Discontinued NSAI: 693 (27.2%)


NATALEE: Invasive Disease-Free Survival

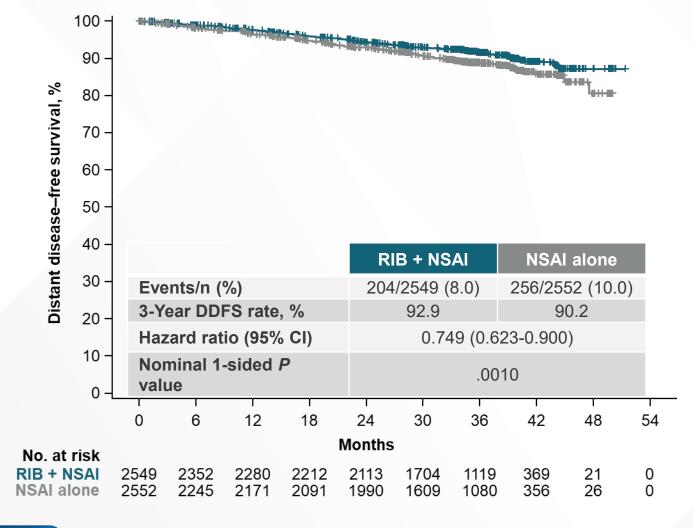
- The median follow-up for iDFS was 33.3 months (maximum, 51 months) an additional 5.6 months from the second interim efficacy analysis
- The absolute iDFS benefit with ribociclib plus NSAI was 3.1% at 3 years
- The risk of invasive disease was reduced by 25.1% with ribociclib plus NSAI vs NSAI alone


NATALEE: iDFS by Anatomical Stage



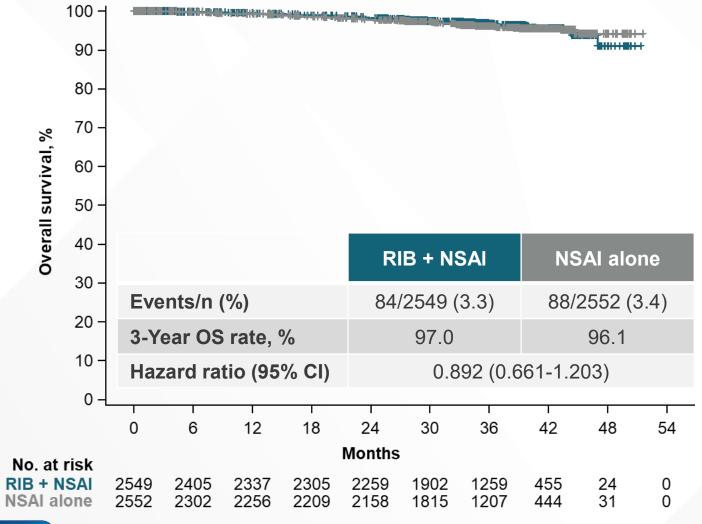
The risk of invasive disease was reduced by 30% for stage II and by 24.5% for stage III disease with ribociclib plus NSAI vs NSAI alone

NATALEE: iDFS by Nodal Status



The risk of invasive disease was reduced by 27.7% for node-negative and by 24.1% for node-positive disease with ribociclib plus NSAI vs NSAI alone

NATALEE: Distant Disease–Free Survival

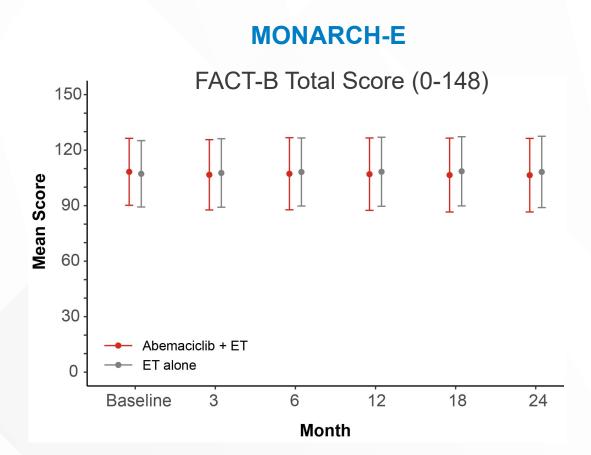

- The absolute DDFS^a benefit with ribociclib plus NSAI was 2.7% at 3 years
- The risk of distant disease was reduced by 25.1% with ribociclib plus NSAI vs NSAI alone at the final analysis

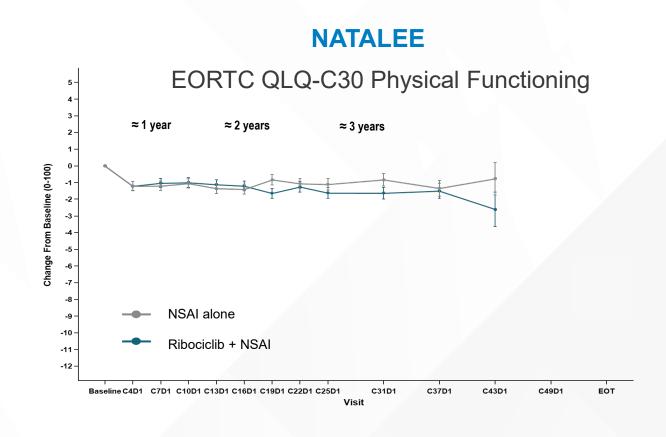
^aDDFS is the time from randomization to the date of the first event of distant recurrence, death by any cause, or second primary nonbreast invasive cancer (excluding basal and squamous cell carcinomas of the skin).

Hortobagyi G, et al. SABCS 2023. Abstract GS03-03.

NATALEE: Overall Survival

- The median follow-up for OS was 35.9 months at the final analysis
- The OS data require longer-term follow-up, as there were so few events in both treatment arms (4%)


NATALEE: Safety Profile of Ribociclib at 400 mg


		RIB + NSAI n=2525		alone 2442
AESIs, %	Any grade	Grade ≥3	Any grade	Grade ≥3
Neutropeniaª Febrile neutropenia	62.5 0.3	44.3 0.3	4.6 0	0.9 0
Liver-related AEs ^b	26.4	8.6	11.2	1.7
QT interval prolongation ^c ECG QT prolonged	5.3 4.3	1.0 0.3	1.4 0.7	0.6 0
Interstitial lung disease/pneumonitis ^d	1.5	0	0.9	0.1
Other clinically relevant AEs, %				
Arthralgia	37.3	1.0	43.3	1.3
Nausea	23.3	0.2	7.8	0.0
Headache	22.8	0.4	17.0	0.2
Fatigue	22.3	0.8	13.2	0.2
Diarrhea	14.5	0.6	5.5	0.1
VTE ^e	1.5	0.6	0.8	0.4

- In this updated analysis:
 - No AESIs
 - No >1% increase in clinically relevant AEs
 - Only an 0.8% increase in discontinuations
- The most frequent all-grade AEs (with ribociclib + NSAI vs NSAI alone) leading to discontinuation in both treatment arms were:
 - Liver-related AEs
 - Arthralgia

Adjuvant CDK 4/6 Inhibitors in ER+ EBC QOL Scores Maintained Over Time on Treatment

CDK4/6 Inhibitors in Early Breast Cancer Summary

CDK4/6 Inhibitor	Trial	Approval/Status
Abemaciclib	monarchE	 FDA-approved with endocrine therapy (tamoxifen or an aromatase inhibitor) for the adjuvant treatment of adult patients with HR+, HER2-, node-positive, early breast cancer at high risk of recurrence. High risk: either ≥4 pALN or 1-3 pALN and either tumor grade 3 or a tumor size ≥50 mm Previously approved for the above high-risk population with the additional requirement of having a Ki-67 score ≥20%. Ki-67 testing requirement now removed
Ribociclib	NATALEE	 Positive results, with a 25% reduction in the risk of recurrences for all subgroups with EBC Submission to FDA
Palbociclib	PALLAS Penelope-B	Palbociclib did not show a benefit in this setting

Other Ongoing Randomized Phase III Trials of CDK4/6 Inhibitors in HR+/HER2- eBC

POETIC-A (NCT04584853)

Target N = 2500

Patient Population: Postmenopausal and high baseline Ki-67 ≥20% or predicted Ki-67 ≥8% after 2 wk of AI therapy by clinicopathologic factors

Randomization of patients with Ki-67 ≥8% after 2 wk of AI therapy given prior to surgery

Regimen:

ET alone VS ET + abemaciclib

ADAPTcycle (NCT04055493)

N = 1670

Patient Population: Pre/postmenopausal with intermediate risk: RS ≤25 and Ki67_{postendocrine}>10%, RS >25 and Ki67_{postendocrine}<10% in p/cN0-1 pts, or RS ≤25 and Ki67_{postendocrine}<10% in c/pN2-3 pt

Preoperative ET

Regimen:

ET + ribociclib → adjuvant ET VS SoC chemotherapy → adjuvant ET

Adverse Events Related to CDK4/6 Inhibitor Therapies and ET

Ribociclib was associated with higher rates of hematological toxicity, primarily neutropenia, and liver—related adverse events

Abemaciclib was associated with a high rate of gastrointestinal toxicities, primarily diarrhea (grade 1–2)

Adjuvant abemaciclib has a tolerable safety profile with symptoms that are reversible and can be managed by dose reductions without compromising efficacy

Monitoring and Managing Common Adverse Events

Diarrhea

- Take action immediately at the first signs of symptoms
 - 1. Start an over-the-counter anti-diarrheal and call your doctor
 - 2. Stay hydrated and drink clear fluids
 - 3. Watch for improvement and follow up with your doctor
- Dietary suggestions
 - Eat smaller meals more frequently
 - Choose foods that are easy to digest
 - > Look for soft, bland foods
 - > Eat foods that are high in sodium and potassium
 - Avoid:
 - Dairy products
 - > High-fiber foods
 - > Fatty or greasy foods
 - > Spicy foods
 - > Sugar-free candy or gum made with sugar alcohol
 - Food or drinks that have caffeine
 - > Alcoholic drinks
 - > Food or drinks that are too hot or too cold

Neutropenia and Liver Problems

- CBCs: Monitor complete blood counts prior to the start of therapy, every 2 weeks for the first 2 months, monthly for the next 2 months, and as clinically indicated
- LFTs: Monitor ALT, AST, and serum bilirubin prior to the start of therapy, every 2 weeks for the first 2 months, monthly for the next 2 months, and as clinically indicated

Generally managed by dose adjustments

Summary: HR+ eBC

- Adjuvant abemaciclib reduces risk of recurrence by one-third in high-risk HR+ breast cancer and should be considered for patients meeting monarchE eligibility
 - LN ≥4 OR 1-3+ LNs and T ≥5 cm or grade 3
 - Benefit seen in patients with both low and high Ki-67 tumors

- Olaparib is the preferred standard adjuvant therapy for gBRCAm patients
- Need to await results from NATALEE to understand if intermediate-risk patients should receive adjuvant ribociclib
 - Will need to weigh benefits with toxicity and the need for 3 years of therapy
- Trials ongoing to evaluate the role of SERDs in the immediate and extended adjuvant settings

Racial/Ethnic Disparities Among Minority Patients With HR+/HER2-BC

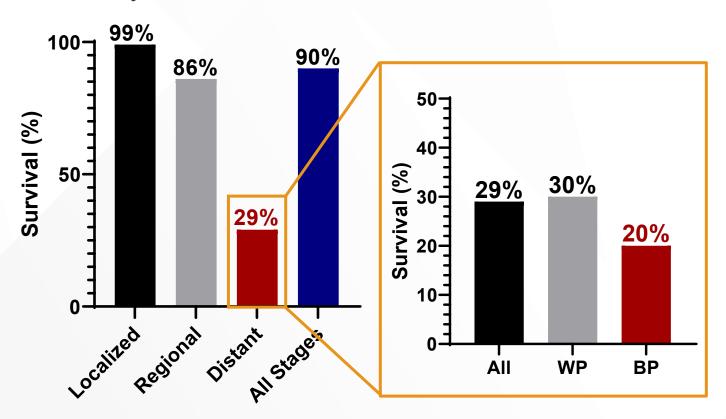
Improving Health Outcomes of Racial/Ethnic Minorities

- BC mortality has been steadily decreasing for the past few decades
- However, there are persistent racial and ethnic disparities in US outcomes
 - Black patients have a 40% higher mortality rate compared to White patients
 - BC is the leading cause of cancer death for Black and Hispanic women
 - Black patients have higher mortality rates for HR+/HER2- BC compared to other subgroups

"Increased frequency of non-luminal A/high risk of recurrence breast tumors coupled with suboptimal provision of prognostic tests and adjuvant treatment contribute significantly to the higher mortality rates in Black compared to White women with breast cancer."

Lovejoy et al, 2023

- Unconscious or implicit bias refers to associations or attitudes that reflexively alter our perceptions, thereby affecting behavior, interactions, and decision-making.
 - May influence the way information about an individual is processed, leading to unintended disparities
- Implementing organizational and individual strategies to recognize and mitigate unconscious bias can contribute to reducing these disparities
 - Meaningful diversity training
 - Self-reflection on personal biases
 - Questioning and actively countering stereotypes
 - Mentorship and sponsorship
 - Cultural humility and curiosity
 - Intentionally diversifying experiences


Improving Health Outcomes of Racial/Ethnic Minorities

- Racial disparity in breast cancer outcomes is complex
- Various factors contribute to difference in survival rates and outcomes among Black, Hispanic, and White breast cancer patients
 - Non-biological:
 - > Access to care including adherence to endocrine therapy
 - > Access and engagement with screening, mammography, and molecular risk assessment
 - > Delay in referral to cancer providers
 - Biological:
 - > Higher incidence of non-luminal A subtypes (associated with less favorable outcomes)
 - > Higher gene expression-based risk scores
 - > Higher disease stage at presentation for younger patients
 - > Higher 5-year recurrence risk
 - Decreased awareness of cancer risk and/or distrust of the medical system

Distant Metastasis is the Main Reason for Cancer Related Deaths

Five-year relative survival of females with breast cancer, United States 2011-2017

Majority of the breast cancerrelated deaths are caused by DISTANT METASTASES

Black patients (BP) with breast cancer have 40% higher death rates compared to White patients (WP)

Black Women with ER+ Disease Have Higher Risk of Recurrence

Black race is associated with distant recurrence in ER+/HER2-, but not in TN or HER2+ disease

Randomized Adjuvant Breast Cancer Trials

Study/Cohort	No.	Black	Stage	Black race and risk of recurrence
E1199 (NCT00004125) Sparano JA, et al. <i>J Natl Cancer Inst.</i> , 2012	4,817	405 (8.4%)	11-111	↑1.58-fold (p=0.002) in ER+/HER2- disease
E5103 (NCT00433511) Schneider BP, et al. <i>JCO Precision Oncol.</i> , 2017	2,859	386 (13.5%)	11-111	↑1.5-fold (p=0.027) in ER+/HER2- disease
Montefiore-Einstein cohort Kabat GC, et al. <i>J Racial Ethn Health Disparities</i> , 2017	3,890	1,394 (35.8%)	1-111	↑1.84-fold (p<0.05) in ER+/HER2- disease

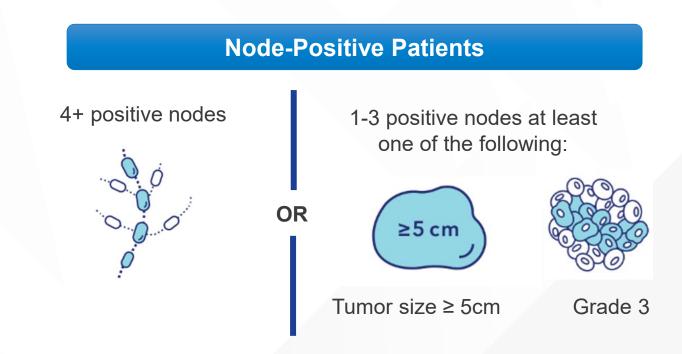
Case-Based Learning Lab

Case Study Patient Presentation and History

- A 48-year-old premenopausal Black woman palpated a mass in her right breast
- Imaging revealed a 3.5 cm mass
- Biopsy demonstrated a grade 2 invasive lobular carcinoma, ER 95%, PR 95%, HER2 1+

- An enlarged node was noted on axillary ultrasound and FNA was positive for malignant cells
- She underwent upfront surgery and was found to have a 4.1 cm grade 2 invasive lobular cancer, with 2/7 lymph nodes

Case Study Audience Question


What would be your next step for this patient?

- a) Ki-67 testing
- b) Oncotype Dx testing
- c) Start adjuvant endocrine therapy
- d) Start adjuvant endocrine therapy + chemotherapy
- e) Unsure

Discussion: Risk Assessment

- What factors increase her risk of recurrence?
 - Nodal positivity
 - Grade and stage of disease
 - Positive margins
 - High proliferation rate
 - Younger age
 - HR and HER2 status
- High risk of recurrence based on:
 - Extent of nodal involvement
 - Tumor size
 - Tumor grade

Which Patients Should Be Considered for Adjuvant Abemaciclib with N+, High-Risk Early-Stage BC?

- ≥ 4 positive lymph nodes (any T, grade)
- T3, N1-3 (any grade)
- ▼ T1-2, N1-3, AND grade 3

Risk of Early Breast Cancer Recurrence

Approximately 20-30% of patients with eBC experience relapse^{1,2}

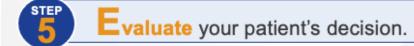
Factors that affect risk of recurrence in people with eBC³⁻⁶:

- Young age at diagnosis
- Tumor morphology (ductal versus lobular)
- Larger tumor size
- Higher tumor grade
- Symptomatic presentation
- Presence of lymphovascular invasion

- Axillary node involvement
- Negative ER or HER2 overexpression
- Positive or close margins
- PR negativity
- High proliferation rate (eg, high Ki-67)
- Metaplastic (vs. non-metaplastic) carcinoma

Case Study Clinical Course

- Oncotype Dx Recurrence
 Score returned at 11
- Discussed recurrence risk, treatment options, and goals and preferences with patient
- Elected not to administer adjuvant chemotherapy and started her on leuprolide + letrozole


SHARE Decision-Making Model

Case Study Audience Question

Would you add a CDK4/6 inhibitor?

- a) Yes
- b) No
- c) Unsure

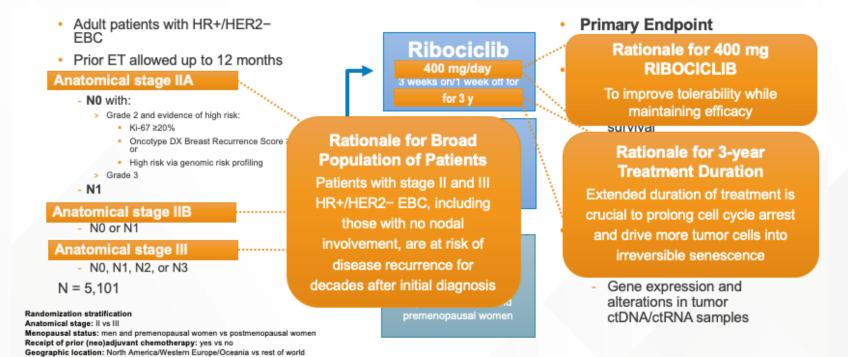
Case Study Audience Question

Which CDK4/6 inhibitor would you use?

- a) Abemaciclib
- b) Ribociclib
- c) I would not use a CDK4/6 inhibitor
- d) Unsure

Case Study Clinical Course

- You explain to the patient that adding a CDK 4/6 inhibitor to hormone therapy can reduce her risk of recurrence vs hormone therapy alone by helping to kill cancer cells left behind after surgery, chemotherapy, or radiation
 - 35% reduction in the risk of cancer returning compared with hormone therapy alone
 - Reduces risk of cancer from progressing to incurable metastatic disease


- She was started on abemaciclib
 - For the treatment of HR+, HER2-, node-positive high-risk early breast cancer, NCCN® recommends considering the addition of 2 years of abemaciclib + ET as a Category 1 treatment option
 - High risk defined as ≥4 positive lymph nodes, or 1-3 positive lymph nodes with one or more of the following: grade 3 disease, tumor size ≥5cm

Discussion: Choosing a CDK 4/6 Inhibitor

When would you consider treatment with ribociclib?

NATALEE: Study Design Unique Features

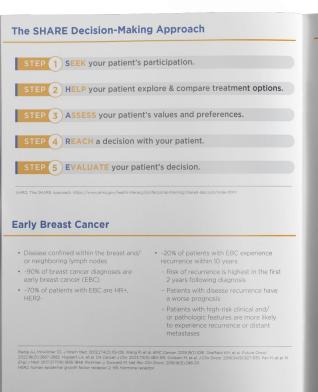
Case Study Audience Question

 8 days after starting abemaciclib, the patient developed diarrhea with up to 4 bowel movements per day

- What would you do?
 - a) Discontinue abemaciclib
 - Hold abemaciclib and utilize anti-diarrheal therapy; once diarrhea is resolved, reinitiate abemaciclib at a lower dose
 - c) Dose reduce abemaciclib
 - d) Continue abemaciclib and use anti-diarrheal therapy
 - e) Unsure

Case Study Conclusion

- Hold abemaciclib and utilize anti-diarrheal therapy
- Once diarrhea is resolved, reinitiate abemaciclib at a lower dose
- Most cases of diarrhea with abemaciclib + ET were low grade and manageable
- Dose modifications can help improve tolerability
- Increase intake of oral fluids


Case Study: Discussion

- How can we best address and mitigate factors surrounding racial/ethnic disparities among minority patients?
 - Higher risk of recurrent breast tumors
 - > Black race is associated with distant recurrence in ER+/HER2-
 - Access to care
 - > Delay in referral to cancer providers
 - Prognostic testing and risk assessment
 - > Access and engagement with screening, mammography, and molecular risk assessment
 - Intervention: adjuvant treatment
 - Assessing and encouraging adherence to endocrine therapy
 - Discussing recurrence risk
 - > Decreased awareness of cancer risk and/or distrust of the medical system

Shared Decision-Making Guide

Treatment Options for HR+/HER2- EBC

- · Biomarker testing for tumor ER, PR, and HER2 status is recommended for all
- Methods for testing include: PCR, NGS, FISH, and IHC
- Goal of HR+, HER2- EBC treatment: eradicate cancer and prevent
- Standard of care for HR+, HER2- EBC includes locoregional therapies (surgery, radiation therapy) and adjuvant/neoadjuvant systemic therapies (chemotherapy, endocrine therapy)

- Ovarian suppression (LHRH analogues) in high risk
- Extended adjuvant therapy
- Adjuvant ET for 5 years results in a substantial reduction in the risk of local
- The addition of chemotherapy to adjuvant ET is recommended in certain patients with HR+/HER2- breast cancer based on
- Molecular profiling tests help to determine whether to add chemotherapy to ET for

- High risk of recurrence based on:
- Extent of nodal involvement
- Tumor grade
- Clinical practice guidelines (NCCN®) recommend to consider the addition of a CDK4/6 inhibitor (abemaciclib) to systemic adjuvant ET for node-positive, high-risk, HR+/HER2- EBC patients

Node-Positive Patients

- · Potential for expanding adjuvant CDK4/6 inhibitor (ribociclib) use in a broader patient population
- Stage II and III HR+/HER2- EBC, including those with no nodal involvement

