Case 4: Stage IV *KRAS*+ NSCLC With Co-Alterations in *KEAP1* or *STK11*

- 72-year-old woman
- Who presents to her GP with a 9 cm lung mass invading the mediastinum and liver metastases on CT
- Biopsy-proven adenocarcinoma (T4N2M1c, stage IV)
- The patient's tumor has a PD-L1 score of <1%
- Her ECOG PS is 1
- Molecular testing results reveal a KRAS G12C mutation as well as KEAP1 and TP53 alterations

What is the most appropriate treatment?

Patients with *KRAS*-Mutated NSCLC Respond to Frontline IO-Based Therapy

FDA analysis of 1L therapy trial outcomes according to KRAS mutation status

		ORR (95% CI)	
	KRASwt N=875	KRASm N=555	KRAS G12C N=157
ICI+Chemo	51% (46, 57)	46% (39, 53)	47% (33, 60)
ICI alone	33% (27, 40)	37% (29, 46)	33% (20, 49)
Chemo alone	32% (33, 60)	33% (20, 49)	44% (31, 59)

Study Therapy	Median OS, mos (95% CI)						
	KRASwt	KRASm	KRAS G12C				
ICI+chemo	18.7 (16.0, 25.2) N=313	22.4 (18.2, NE) N=219	20.8 (11.3, NE) N=58				
	HR 1.12 (95%	CI: 0.86, 1.46)					
ICI alone	16.4 (13.4, 19.7) N=240	16.2 (11.1, NE) N=135	11.8 (8.2, NE) N=45				
	HR 1.01 (95%	11-45					
Chemo alone	14.9 (12.2, 16.6) N=322	17.1 (12.3, 18.9) N=201	17.5 (10.7, 21.1) N=54				
	HR 1.02 (95%	1 N=54					

Survival Benefit With First-Line Nivolumab + Ipilimumab in Advanced NSCLC Regardless of *KRAS, STK11*, and *KEAP1* Mutation Status

	KRAS-mut		KRAS-WT		STK11-mut		STK11-WT		KEAP1-mut		KEAP1-WT	
	NIVO+IPI	Chemo	NIVO+IPI	Chemo	NIVO+IPI	Chemo	NIVO+IPI	Chemo	NIVO+IPI	Chemo	NIVO+IPI	Chemo
n	88	75	150	162	39	39	199	198	20	18	218	219
Median OS, mo 95% CI	17.5 11.1–28.1	15.7 11.9-21.2	20.6 16.2-29.4	17.9 12.7—21.2	10.8 5.8-22.1	11.2 7.3-15.0	21.2 17.4—29.4	18.5 14.5-21.3	24.4 5.8-NR	8.9 4.8-11.9	20.1 16.2-26.2	16.7 14.5—19.9
HR 95% CI		79 -1.12	0.56-			78 -1.27		75 -0.94		31 -0.70		80 -1.00
4-y OS rate, % 95% CI	27 19-38	16 10-27	34 28-43	22 16-29	19 10—37	5 1–21	34 28-42	23 18-30	44 26-73	0 0—0	31 25-38	22 17—28

Do Additional Mutations Impact IO Efficacy in Driver Mutation-Negative NSCLC – *KEAP1*

KEAP1-mut

							D : O.T.			-
_				T+D+C1			D+CT		C.	
	ts/patients			18/22			19/23		6/	
mOS	, months (95% CI)	13.7	7 (7.2–2	6.5)	8.1 (4.0-12.9	9)	8.7 (5.	1–NE)
HR* (95% CI)		0.43	(0.16-1	.25)	0.77 (0.31-2.1	5)	-	
0.8 -			<u> </u>							
0.4 -		ኍ	¬'		.0%	3	0.0%	20	.0%	
٥.2					\vdash	4	4.5%	→ NE	.	
			0	0%	0	.0%		0%		
0.0			$\overline{}$		$\overline{}$					\neg
(6	12	18	24	30	36	42	48	54	60
		Tim	a fro	m rand	domic	sation	(mont	hs)		
			ie ii o	iii raii	JUIIII	Julion	(,		
risk	0 47						•	,	0	0
risk 0+CT 2		11 7	9	7 4	6 3	6 2	4 2	1 0	0	0

KEAP1-wt

			T+D	+CT	D+	-CT		C.	Т
	Events/p	atients, n/N	236	/303	253	/307		278/	312
	mOS, mo	onths (95% CI)	14.0 (11	1.8-16.1)	13.5 (11	1.7-14.9)	12	.2 (10.	6–13.
	HR* (95%	6 CI)	0.75 (0.	63-0.89)	0.81 (0.6	69-0.97)		_	
	1.0								
;	0.8 -	1							
rionability of OS									
	0.4 -		E.	32.5% 30.3%		4%			
	0.4 -		23.1%	30.3%		4% 0%	20.	6%	
	0.2 -		23.1%	30.3%			20. 16.		
		6 12		30.3%	21.	8.7%			60
	0.2 -		18 2	30.3% 14 24 30	.3%	8.7% 42 4	16. 18	2%	60
	0.2		18 2	30.3%	.3%	8.7% 42 4	16. 18	2%	60
t ı	0.2 - 0.0 - 0 0	Tim	18 2 ne from	30.3% 14 24 30 randomis	36 sation (8.7% 42 4 months)	16. 18	2% 54	
t ı	0.2		18 2 ne from	30.3% 14 24 30	.3%	8.7% 42 4 months)	16. 18	2%	60

CheckMate 9LA²

POSEIDON¹

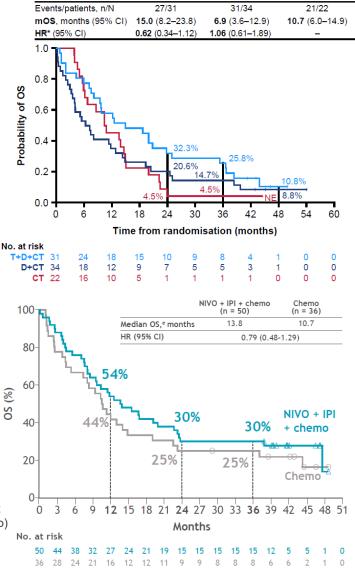
	KEAP1-	mut	KEAP1-wt		
Outcomes	Nivo/Ipi + CT (2- cycles) (n=16)	Chemotherapy (CT) (n=16)	Nivo/lpi + CT (2-cycles) (n=150)	Chemotherapy (CT) (n=131)	
Median OS, months (95% CI)	13.2 (6.6-22.7)			14.1 (11.4-17.4)	
HR (95% CI)	0.51 (0.24	-1.08)	0.94 (0.71-1.23)		

^{1.} Johnson ML, et al. ESMO 2022. Abstract LBA59. 2. Paz-Ares LG, et al. J Thorac Oncol. 2023;18:204-222.

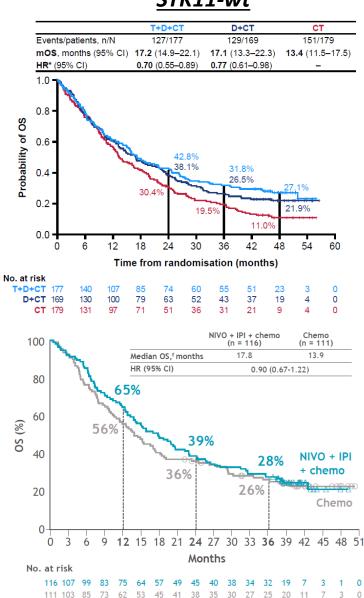
Do Additional Mutations Impact IO Efficacy in Driver Mutation-Negative NSCLC – *STK11*

СТ

POSEIDON¹

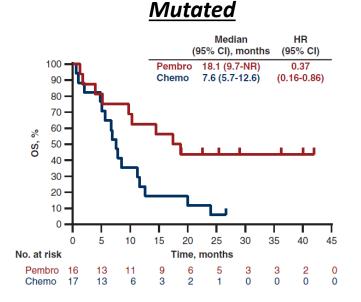

CheckMate 9LA²

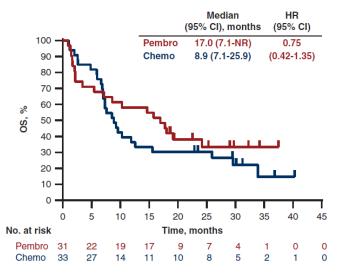
e 95% CI, 8.6-22.7 (N+I + chemo) and 5.4-14.9 (chemo); f 95% CI, 13.2-22.8 (N+I + chemo) and 10.6-17.4 (chemo) CT, chemotherapy; D, durvalumab; Mut, mutation; T, tremelimumab.


- 1. Johnson ML, et al. ESMO 2022. Abstract LBA59.
- 2. Paz-Ares LG, et al. ASCO 2022. Abstract LBA9026.

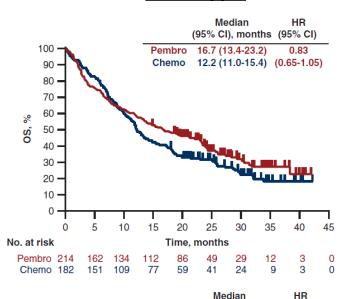
STK11-mut

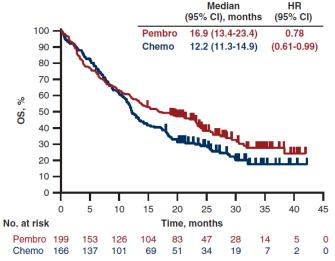
T+D+CT


STK11-wt



Do Additional Mutations Impact IO Efficacy in Driver Mutation-Negative NSCLC – Data Are Mixed?


STK11


KEAP1

Wild-Type

Potential First-Line Options for NSCLC With *STK11* or *KEAP1* Mutations

Anti PD-(L)1 + Chemotherapy +/- CTLA-4 •Concurrent KRAS mutation

- Clonal mutations with LOH
- Truncating mutation
- Missense mutations with LOF
- Concurrent STK11/KEAP1 mutations

- Missense mutations predicted benign
- Subclonal mutations
- KRAS WT
- KEAP1 WT (if STK11 mutant)
- STK11 WT (if KEAP1 mutant)

Anti PD-(L)1 monotherapy

PD-L1 100% PD-L1 50% PD-L1 <1%

Summary

- Patients with NSCLC who have a mutation in KRAS and no other known driver alterations should be treated with a frontline therapy strategy that incorporates immunotherapy +/- chemotherapy
- Emerging evidence suggests certain molecular alterations, such as STK11 and KEAP1, may impact the efficacy of anti-PD(L)1-based treatments in advanced NSCLC
- Prospective randomized data are needed to determine the best treatment strategy for patients who harbor a mutation in STK11 or KEAP1

We should try to give our best treatment upfront. We never quite know if we're going to get to second line.