The Changing Paradigm of Treating MASLD/MASH: At the Crossroads of Hepato-Cardiometabolic Care

Naim Alkhouri, MD Nicholas Pennings, DO Amreen Dinani, MD

CHAIR:

Naim Alkhouri, MD, FAASLD, DABOM

Chief Medical Officer

Director of the Steatotic Liver Program

Chief of Transplant Hepatology

Arizona Liver Health

Phoenix, AZ

PANELIST:

Amreen M. Dinani, MD, FRCPC

Associate Professor of Medicine

Gastroenterology

Duke University School of Medicine

Durham, NC

PANELIST:

Nicholas Pennings, DO, DABOM, MFOMA, FACOFP, FAAFP

Director, Campbell University Health Center

Chair and Professor of Family Medicine

Buies Creek, NC

Membership, Education, & Resources

Obesity medicine combines science-based medicine with individualized obesity treatment, resulting in improved health outcomes for patients and career satisfaction for healthcare providers.

Obesity Medicine Association (OMA) members are physicians, nurse practitioners, physician assistants, and other healthcare providers who take a **comprehensive, evidence-based approach** to treating obesity.

Learn More

Disclosures of Conflicts of Interest

Naim Alkhouri, MD, FAASLD, DABOM

Consulting Fees: 89Bio, AbbVie, Boehringer Ingelheim, Echosens, Fibronostics, Gilead, Intercept, Ipsen, Madrigal, NorthSea, Novo Nordisk, Perspectum, Pfizer, Zydus

Research: 89Bio, Akero, Arbutus, AstraZeneca, Better Therapeutics, Boehringer Ingelheim, Bristol-Myers Squibb, Corcept, CymaBay, DSM, Galectin, Genentech, Genfit, Gilead, Healio, Hepagene, Intercept, Inventiva, Ionis, Ipsen, Madrigal, Merck, NGM, Noom, NorthSea, Novo Nordisk, Perspectum, Pfizer, Poxel, Viking, Zydus

Amreen M. Dinani, MD, FRCPC

Consulting Fees: Madrigal Pharmaceuticals, Novo Nordisk

Research: GSK, Hanmi, Inventiva, Liver Cirrhosis Network, Madrigal Pharmaceuticals, NIDDK

Nicholas Pennings, DO, DABOM, MFOMA, FACOFP, FAAFP

Consulting Fees: Abbott

Other: Medifast

Learning Objectives:

☆medtelligence[®]

After participating in this educational activity, participants should be better able to:

- Summarize the pathophysiologic rationale for using obesity pharmacotherapy in patients with metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH)
- Apply recommendations for the treatment of patients with MASLD/MASH with GLP-1 RAs
- Devise a multidisciplinary plan to manage obesity in patients with MASLD/MASH
- Interpret data from clinical trials of emerging liver-directed therapies for MASLD/MASH
- Interpret data from clinical trials of emerging anti-obesity therapies for MASLD/MASH

Consensus Nomenclature

*Weekly intake 140-350g female, 210-420g male (average daily 20-50g female, 30-60g male)

**e.g. Lysosomal Acid Lipase Deficiency (LALD), Wilson disease, hypobetalipoproteinemia, inborn errors of metabolism

***e.g. Hepatitis C virus (HCV), malnutrition, celiac disease, human immunodeficiency virus (HIV)

Adapted from: Rinella ME, et al. *Hepatology*. 2023;78(6):1966-1986. Kanwal F, et al. *Hepatology*. 2024;79(5):1212-1219.

In an adult with steatosis in whom other causes of steatotic liver disease have been ruled out, which of the following is needed to confer a diagnosis of MASLD?

- Presence of 1 cardiometabolic risk factor
- Presence of at least 2 cardiometabolic risk factors
- Presence of at least 3 cardiometabolic risk factors
- Presence of all 5 cardiometabolic risk factors

Cardiometabolic Risk Factors: It Only Takes One!

Adult Criteria	Cutoffs & Parameters
BMI	BMI >25 kg/m ² [23 Asia] OR waist circumference >94 cm (M) / 80 cm (F)*
Fasting Serum Glucose	≥100 mg/dL OR 2-hour post-load glucose level ≥140 mg/dL OR HA1c >5.6% OR T2D
Blood Pressure	≥130/85 mmHg OR specific antihypertensive drug therapy
Plasma Triglycerides	≥150 mg/dL OR lipid-lowering drug therapy
Plasma HDL Cholesterol	\geq 40 mg/dL(M)/ \geq 50 mg/dL(F) OR lipid-lowering drug therapy

*Or ethnicity-adjusted equivalent

AASLD. New MASLD Nomenclature. https://www.aasld.org/new-masld-nomenclature

Pathophysiology of MASLD/MASH

Nicholas Pennings, DO

Obesity

A chronic, relapsing, and treatable multifactorial, neurobehavioral disease,

wherein an increase in body fat promotes **adipose tissue dysfunction** and **abnormal fat mass physical forces**

resulting in adverse *metabolic, biomechanical,* and *psychosocial* health consequences.

Obesity: A Multifactorial Disease

Severity of Obesity: Body Mass Index

	Normal weight: 18.5 - 24.9
Overweight and Obesity	Pre-obesity/overweight: 25.0 - 29.9
Classification	Class I obesity: 30.0 - 34.9
BMI (m/kg²)	Class II obesity: 35.0 - 39.9
	Class III obesity: ≥40

Different BMI cutoff points may be more appropriate for women vs men, among those of different races and among individuals.

Adapted from Obesity Algorithm®, Obesity Medicine Association®

⇔medtelligence[®]

Pathogenic Obesity

Adapted from Obesity Algorithm[®], Obesity Medicine Association[®]

Getting to the Core of SLD: Metabolic Dysfunction

Raggi P, et al. Atherosclerosis. 2024;392:117523.

☆medtelligence[™]

Metabolic Dysfunction, Inflammation, and Disease

MACE

MALO

Other

Targher G, et al. Gut. 2024;73(4):691-702.

What is the most common cause of death in patients with MASLD?

- Cardiovascular disease
- Decompensated cirrhosis
- Extrahepatic cancer

☆medtelligence[™]

• Hepatocellular carcinoma

MASLD: From Unmitigated Risks to Adverse Events and Outcomes

CVD: the most common cause of death

MASH: the most common indication for liver transplantation and cause of primary HCC.

Bilson J, et al. *Diabetes Metab*. 2024;50(1):101506. Finney AC, et al. *Front Cardiovasc Med*. 2023;10:1116861. Schattenberg JM, et al. *Commun Med (Lond)*. 2023;3(1):1. Targher G, et al. *Gut*. 2024;73(4):691-702. Younossi Z, et al. *Hepatol Communic*. 2023;8(1):e0352.

Treating and Managing MASLD/MASH

Goal:

- Prevention of:
 - MACE
 - MALO
 - Extrahepatic cancer
 - Premature death

Strategy:

• Switch from focus on singlemodality care to simultaneous treatment and management of multiple comorbidities

Appetite Regulation

Traditional Thinking

- Purposeful behavior
- regulates weight
- Calories in & calories out
- Regulates weight

Additional Understanding

- Biology regulates weight
- Hormonal response
- regulates weight

Appetite Regulation

Physiologic Response to Calorie Deficit

Case 1

Nicholas Pennings, DO

Case 1: A 44-Year-Old White Woman With Class 2* Obesity

Medical Record	Results
Medical history	T2D, HTN, dyslipidemia, abdominal U/S for RUQ pain: fatty infiltrate, no evidence of cholecystitis; family history: obesity and CVD
Current meds	Glyburide 10 mg bid, sitagliptin/metformin 50 mg/1000 mg bid, metoprolol ER 100 mg daily, lisinopril 10 mg daily, atorvastatin 40 mg daily
Social history	Sedentary, denies illicit drug use, drinks occasional glass of wine, smokes cigarettes (1/2 ppd)
Physical exam	BMI: 37.6 kg/m ² , BP: 137/86 mmHg, central adiposity, mild hepatomegaly

*Class 2 obesity: BMI 35 to <40 kg/m²

Rule Out Other Causes of Steatotic Liver Disease

- Medications: eg, TPN, glucocorticoids, tamoxifen, amiodarone, methotrexate
- **CLD**: eg, alcoholic hepatitis, viral hepatitis, autoimmune disease (eg, PBC, PSC), rare disease (eg, A-1-A deficiency, Wilson disease)

• HIV

⊘medtelligence[™]

• Acquired metabolic disease: eg, lipodystrophy, cachexia, intestinal bypass surgery

Rinella ME, et al. Hepatology. 2023;77(5):1797-1835

Effects of Alcohol Use and Cigarette Smoking: A Mandate for Screening

Alcohol¹

• "Around 17% of patients with a diagnosis of MASLD have, or will receive, a diagnosis of ALD or AUD at some point in their life course. Such patients have a considerably higher rate of progression to cirrhosis or HCC."

Tobacco²

• "The combination of tobacco consumption and T2D is associated with a higher prevalence of fibrosis in people with MASLD."

Case 1 (cont'd)

CBC WBC 5.5 × 10 ³ /uL, HCT 0.378 (37.8%); platelet ct: 241 G/L Serum glucose 155 mg/dL, HbA _{1c} : 8.3% Lipid TC: 220 mg/dL, HDL: 36 mg/dL, LDL: 88 mg/dL, TG 270 mg/dL Liver function ALT: 62 IU/L, AST: 48 IU/L CMP BUN: 22 mg/dL, creatinine: 1.1 mg/dL, hsCRP: 5.32	Diagnostic Test	Results
Serun glucose 155 mg/dL, HbA _{1c} : 8.3% Lipid TC: 220 mg/dL, HDL: 36 mg/dL, LDL: 88 mg/dL, TG 270 mg/dL Liver function ALT: 62 IU/L, AST: 48 IU/L CMP BUN: 22 mg/dL, creatinine: 1.1 mg/dL, hsCRP: 5.32	CBC	WBC 5.5 × 10 ³ /uL, HCT 0.378 (37.8%); platelet ct: 241 G/L
LipidTC: 220 mg/dL, HDL: 36 mg/dL, LDL: 88 mg/dL, TG 270 mg/dLLiver functionALT: 62 IU/L, AST: 48 IU/LCMPBUN: 22 mg/dL, creatinine: 1.1 mg/dL, hsCRP: 5.32	Serum glucose	155 mg/dL, HbA _{1c} : 8.3%
Liver functionALT: 62 IU/L, AST: 48 IU/LCMPBUN: 22 mg/dL, creatinine: 1.1 mg/dL, hsCRP: 5.32	Lipid	TC: 220 mg/dL, HDL: 36 mg/dL, LDL: 88 mg/dL, TG 270 mg/dL
CMP BUN: 22 mg/dL, creatinine: 1.1 mg/dL, hsCRP: 5.32	Liver function	ALT: 62 IU/L, AST: 48 IU/L
mg/dL	СМР	BUN: 22 mg/dL, creatinine: 1.1 mg/dL, hsCRP: 5.32 mg/dL
Fibrosis Score LSM: 8.6 kPa, CAP score: 371 dB/m	Fibrosis Score	LSM: 8.6 kPa, CAP score: 371 dB/m

Case 1 (cont'd)

- **Breakfast** Sausage biscuit, coffee w/generous amount of flavored creamer
- **Lunch** Salad w/grilled chicken, ranch dressing, 20 oz soda
- **Snack** Chips, 20 oz soda
- DinnerPasta w/meatballs, Italian bread, ice cream, coffeew/generous amount of flavored creamer

Snack Chips

Which dietary pattern is most likely to benefit a patient with MASLD? (select all that apply)

- Mediterranean
- DASH
- Ketogenic
- Low fat
- High protein

You Can't Out-Exercise the Fork

Image courtesy of Michael Betel.

What additional pharmacologic therapy would you consider at this time?

- GLP-1 RA
- Insulin
- Pioglitazone
- SGLT2 inhibitor

Benefits of GLP-1 RAs in Patients With MASLD

Indications for GLP-1 Receptor Agonist Use in MASLD

F0: None F1: Centrilobular pericellular F2: Centrilobular and periportal F3: Bridging F4: Cirrhosis (compensated)

GLP-1 RAs have benefits in patients with T2D, overweight or obesity, and MASLD at every fibrosis stage **except** decompensated cirrhosis

Abushamat LA, et al. Clin Gastroenterol Hepatol. 2024;22(8):1565-1574.

Following and Managing the Patient on a GLP-1 RA: A Team Approach

- Patient education: how GLP-1 RAs work, what to expect:
 - Patient goals: weight and BMI
 - Weekly SC injection
 - Dose escalation
 - Nutrition, hydration
 - Weight-bearing exercise
 - Managing side effects
 - Duration of use

Side effects:

- Dyspepsia, nausea, vomiting
- Constipation, diarrhea
- Hypoglycemia
- Dizziness, fatigue, headache

• Managing side effects:

- Decrease dose
- Assess for sarcopenia
- Increase protein in diet
- Prescribe weight-bearing exercise

Step 5: Sustained Weight Loss With Semaglutide In Adults with Overweight/Obesity Adults and Without Diabetes

Garvey WT, et al; STEP 5 Study Group. Nat Med. 2022;28(10):2083-2091.
Review of Case: A 44-Year-Old White Woman With Class 2 Obesity

- HbA_{1c} = 8.3%
- BMI = 37.6 kg/m²
- HTN, dyslipidemia
- Smokes cigarettes
- ALT = 62 U/L, AST = 48 U/L
- LSM = 8.6 kPa, CAP = 371 dB/m

Rinella ME, et al. *Hepatology*. 2023;78(6):1966-1986.

Case 2

Naim Alkhouri, MD

Case 2: A 56-Year-Old Hispanic Woman Referred By Her PCP

Medical Record	Results
Current meds	Atorvastatin 80 mg/day, losartan 50 mg/day
Physical exam	BMI: 42 kg/m², BP = 139/84 mmHg
Lab test results	LDLc: 98 mg/dL, HA1c: 6.2%, ALT: 90 U/L, AST: 76 U/L, albumin: 4 g/dL, platelet count: 202,000/µL, FIB4: 2.22
VCTE	LSM: 10.9 kPa; CAP: 343 dB/m

Rinella ME, et al. Hepatology. 2023;77(5):1797-1835

What additional test would you consider using to assess for at-risk MASH?

- ELF test
- FAST score
- FIB-4 index
- MRI-PDFF

FAST: Score for Identifying At-Risk MASH in Specialty Care

FAST (FibroScan-AST): composite score calculated from LSM, CAP, and AST

Newsome PN, et al. *Lancet Gastroenterol Hepatol*. 2020;5(4):362-373. Noureddin N, et al. *Hepatology*. 2020;72(6):2228-2230.

Score for Identifying At-Risk MASH in Specialty Care: FAST

Diagnostic Performance Across Derivation and Validation Cohorts ¹		FAST for MASH ²	
			≤0.35: low probability of at-
AUROC	0.80-0.95		risk MASH \rightarrow sequential
Rule-Out (FAST < 0.35)			testing for people with high
Sensitivity	0.64-1.00		
Specificity	0.35-0.86	Attentio n to LSM	In the "gray zone" (\sim 30%) \rightarrow sequential testing with
NPV	0.73-1.00		another test
Rule-In (FAST ≥ 0.67)		Attentio	≥0.67: high probability of at-
Sensitivity	0.82-0.99	n to LSM	risk MASH \rightarrow enroll in MASH
Specificity	0.25-0.75		clinical trials
NPV	0.33-0.83		

Newsome PN, et al. *Lancet Gastroenterol Hepatol*. 2020;5(4):362-373.
Noureddin N, et al. *Hepatology*. 2020; 72(6):2228-2230.

Case 2 (cont'd)

Medical Record	Results
Current meds	Atorvastatin 80 mg/day, losartan 50 mg/day
Physical exam	BMI: 42 kg/m², BP = 139/84 mmHg
Lab test results	LDLc: 98 mg/dL, HA1c: 6.2%, ALT: 90 U/L, AST: 76 U/L, albumin: 4 g/dL, platelet count: 202,000/µL
VCTE	LSM: 10.9 kPa; CAP: 343 dB/m
FAST	FAST score: 0.74 \rightarrow at-risk MASH, significant fibrosis

Medically Complicated Obesity: Target Population for Hepatology Care

At-risk MASH = MASH + \geq F2

Rinella ME, et al. *Hepatology*. 2023;77(5):1797-1835.

Is a liver biopsy ever indicated when evaluating patients for treatment with resmetirom?

- Yes, when a baseline biopsy was done >12 months ago
- Yes, when there is discordance between 2 current NIT results
- No, NITs should be used instead

How would you initiate treatment in this patient?

- Vitamin E
- Resmetirom with lifestyle interventions
- Resmetirom + GLP-1 RA only

A Phase 3, Randomized, Controlled Trial of Resmetirom in NASH With Liver Fibrosis

Placebo Resmetirom, 80 mg Resmetirom, 100 mg (N=318) (N=316) (N=321) 100 90. Percentage of Patients 80 70. 60-50-P<0.001 P<0.001 P<0.001 P<0.001 40-29.9 30. 25.9 25.9 24.2 20. 14.2 9.7 10. 0 NASH Resolution with No Fibrosis Improvement by ≥1 Stage Worsening of Fibrosis with No Worsening of NAFLD Activity Score

Efficacy

Placebo Resmetirom, 80 mg Resmetirom, 100 mg (N=318) (N=316) (N=321) 100 90. Percentage of Patients 80 70. 60 50 40 33.4 27.0 30-22.0 18.9 20-15.6 12.5 10. 0 Diarrhea Nausea

Safety

Harrison SA, et al; MAESTRO-NASH Investigators. N Engl J Med. 2024;390(6):497-509.

Review of Case: A 56-Year-Old Hispanic Woman Referred by Her PCP

- $BMI = 42 \text{ kg/m}^2$
- HbA_{1c} = 6.2%
- ALT = 90 U/L, AST = 76 U/L
- LSM (VCTE) = 10.9 kPa, CAP = 343 dB/m
- ELF score = 9.5
- FAST score = 0.74

Case Conclusion

GLP-1 Therapy/Weight-Loss Strategies + Liver-Directed Therapy

Use of Incretins for Weight Loss in Patients With MASH

AASLD

Semaglutide* can be considered for its approved indications (T2DM/obesity) in patients with MASH, as it confers a cardiovascular benefit and improves MASH.

EASL

GLP-1 RAs are safe to use in MASH (including compensated cirrhosis) and should be used for their respective indications (T2D and obesity) as their use improves cardiometabolic outcomes.

***Once-weekly SC injection**

⇔medtelligence[®]

Rinella ME, et al. Hepatology. 2023;78(6):1966-1986. EASL. J Hepatol. 2024;81(3):492-542.

Combining GLP-1 Agonists With Resmetirom

Zhou XD, et al. npj Gut Liver. 2024;1(4).

Resmetirom: Treat

medtelligence[™]

Resmetirom: Consider Treatment

Resmetirom: Do Not Treat

Treatment With Resmetirom: From Start to Finish

Case 3

Amreen Dinani, MD

Case 3: A 60-Year-Old Black Man With MASH

Medical Record	Results
Medical History	Fatigue, loss of appetite
Current meds	Metformin 1000 mg BID, sitagliptin 100 mg daily (T2D diagnosed at age 54)
Physical exam	BP: 152/86 mmHg, BMI: 34 kg/m ² , bilateral LEE, no visible stigmata of CLD, alert and oriented
Lab test results	LDLc: 95 mg/dL, HA1c: 6.9%, ALT: 66 U/L, AST: 76 U/L, albumin 3.5 g/dL, platelet count: 147,000/µL

Rinella ME, et al. Hepatology. 2023;77(5):1797-1835

Case 3 (cont'd)

Medical RecordResultsNITsabdominal US: nodular liver, splenomegalyFIB-4: 3.82

What test(s) would you order to confirm the patient has CSPH?

- CT scan
- ELF
- FIB4+
- MRI
- VCTE + platelet count

Case 3 (cont'd)

Medical Record	Results
VCTE	21.1 kPa, CAP: 302 dB/m
Platelet count	147,000/μL

What would you do next?

- Initiate a non-selective beta-blocker
- Initiate resmetirom

• Initiate a diet based on intermittent fasting

Beta-Blocker Therapy to Prevent Decompensation

Villanueva C, et al. Lancet. 2019;393(10181):1597-1608.

Baveno VII: A clinically significant decrease in LSM (associated with substantially reduced risk of decompensation and liver-related death) is a decrease of ≥20% associated with LSM <20 kPa or any decrease to a LSM <10 kPa.

SAEs: syncope and bradyarrhythmia occurred in 6 patients (four in the β-blockers group); none were fatal

Would you treat this patient with resmetirom?

- Yes
- No
- Unsure

Case Conclusion

GLP-1 Therapy/Weight-Loss Strategies + Liver-Directed Therapy

Looking Forward: What's in the Pipeline?

Amreen Dinani, MD

Drug Candidates in Phase 3 Clinical Trials

PROGRAM	ΜΟΑ	
Resmetirom	THR-β oral	
Lanifibranor	PAN-PPAR oral	
Efruxifermin	FGF21 injectable	
Pegozafermin	FGF21 injectable	
Semaglutide	GLP1-RA injectable	
Survodutide	Glucagon/GLP-1 receptor dual agonist injectable	
		to a

Pleotropic Actions of FGF-21

Efruxifermin: Phase 2b HARMONY Trial

Efruxifermin is a long-acting FGF21 analog

Primary Endpoint: Fibrosis Improvement Efruxifermin 50mg Dose Achieved Statistical Significance Week 96 Key Secondary Endpoint: NASH Resolution Both Efruxifermin Doses Achieved Statistical Significance Week 96

Phase 2b HARMONY study. https://www.biospace.com/article/releases/akero-therapeutics-reports-statistically-significant-histological-improvements-at-week-96-in-phase-2b-harmony-study/

Pegozafermin: ENLIVEN, Phase 2b Results

Safety: nausea, diarrhea

Loomba R, et al. N Engl J Med. 2023;389(11):998-1008.

Impact of PPAR Agonism on NASH

Lefere S, et al. J Hepatology. 2020;73(4):757-770.

Lanifibranor: Phase 2b Results

Pleotropic Effects of GLP-1

Emerging Incretin Targets

Target	Drug
GLP-1	Semaglutide (ph 3)
GLP-1 + GIP	Tirzepatide (ph 2a)
GLP-1 + glucagon	Cotadutide (ph 2), efinopegdutide (ph 2a), survodutide (ph 3)
GLP-1 + GIP + glucagon	Retatrutide (ph 2a)

Semaglutide: Phase 2 Results

Newsome PN, et al. N Engl J Med. 2021;384:1113-1124.

Semaglutide*: NASH-Related Cirrhosis, Phase 2 Clinical Trial

*GLP-1 agonist, once-weekly SC injection.

Comba R, et al; NN9931-4492 Investigators. Lancet Gastroenterol Hepatol. 2023;8(6):511-522.

Efficacy: In patients with NASH and compensated cirrhosis, semaglutide* did not significantly improve fibrosis or achievement of NASH resolution vs PBO

Safety: GI-related, no deaths

Efruxifermin + Semaglutide: Phase 2b **Clinical Trial Results**

Administration of once-weekly efruxifermin, for 12 weeks, to patients with type 2 diabetes and MASH with fibrosis (F1–F3) receiving a stable GLP1-RA:

12

medtelligence

Harrison SA, et al. Clin Gastroenterol Hepatol. Published online March 4, 2024. doi:10.1016/j.cgh.2024.02.022

Tirzepatide*: SYNERGY-NASH, Ph 2b Clinical Trial

*Dual agonist: GLP-1/GIP

Loomba R, et al; SYNERGY-NASH Investigators. N Engl J Med. 2024;391(4):299-310.

Survodutide*: Phase 2 Clinical Trial

Histologic Improvement in MASH, No Worsening of Fibrosis

Primary Endpoint After 48 Weeks of Planned Treatment

Efficacy: Survodutide was associated with significant improvement in MASH with no worsening of fibrosis (*P* < 0.001)

Safety: AEs (nausea, diarrhea, vomiting) more common with study drug vs placebo; SAEs equally common

Retatrutide*: Phase 2a Clinical Trial

— PBO — 1 mg RETA — 4 mg RETA — 8 mg RETA — 12 mg RETA

a Relative liver fat reduction

Sanyal AJ, et al. Nat Med. 2024;30(7):2037-2048.

Cotadutide*: PROXYMO, Phase 2 Results

A. Placebo-corrected absolute change from baseline in HFF (ITT)

*Dual agonist: GLP-1/GCG

medtelligence

Safety: AEs mostly mild to moderate Gl symptoms

Shankar SS, et al. Clin Gastroenterol Hepatol. 2024;22(9):1847-1857.e11.

Efinopegdutide* (MK-6024): Phase 2a Results

Difference in Liver Fat Content

*Dual agonist: GLP-1/GIP/glucagon

Safety: incidence of GI TRAEs slightly higher with efinopegdutide vs semaglutide

Romero-Gómez M, et al. J Hepatol. 2023;79(4):888-897.

At Least 2 Million Adults With High-Risk MASH in the US: NHANES 2017–2018

The combined burden of MASLD and MASH in North America is expected to increase 82.6% in the next 15 years.

Vilar-Gomez E, et al. *Clin Gastroenterol Hepatol*. 2023;21(1):115-124.e7. Younossi ZM, et al. *J Clin Exp Hepatol*. 2023;13(3):454-467.

Potential Therapeutic Targets for MASH

⊘medtelligence[™] Tincopa N

Concluding Remarks

Naim Alkhouri, MD Nicholas Pennings, DO Amreen Dinani, MD

Visit Medtelligence.net to explore other CE programs!