Bringing Treatment Into Focus: Biomarker-Driven First-Line Therapy for Metastatic Gastric/GEJ Cancers

David H. Ilson, MD, PhD Gastrointestinal Medical Oncologist Memorial Sloan Kettering Cancer Center New York, NY

Sunnie Kim, MD

Associate Professor, Medicine-Medical Oncology Anschutz Medical Campus University of Colorado Cancer Center Aurora, CO

Case Presentation

- 62-year-old man with dark stools and reflux symptoms
- Upper endoscopy shows a large infiltrative and ulcerated non-circumferential mass with stigmata of recent bleeding in the lesser curvature of stomach
- Pathology shows invasive adenocarcinoma with signet ring cell features
- CT chest/abdomen/pelvis shows concentric soft tissue density thickening of the gastric antrum

Case Presentation (cont'd)

- Diagnostic laparoscopy shows peritoneal nodules
- Biopsy confirms signet ring adenocarcinoma
 - Consistent with history of gastric primary
- Biomarker testing performed
 - HER2 IHC: 0
 - PD-L1 CPS: 6
 - CLDN 18.2 IHC: 1+, 30%
- Started on FOLFOX + nivolumab
- Repeat CT chest/abdomen/pelvis showing stable disease for 9 months

CheckMate 649: Study Design

CheckMate 649 is a randomized, open-label, global phase 3 study

CheckMate 649: Overall Survival

PD-L1 CPS ≥ 5

All randomized

 Clinically meaningful improvement in OS with NIVO + chemo vs chemo was maintained with longer follow-up in PD-L1 CPS ≥ 5 and all randomized populations

CheckMate 649: Response and Duration of Response

PD-L1 CPS ≥ 5

All randomized

 Higher ORR was maintained, and responses remained more durable with NIVO + chemo vs chemo with longer follow-up

CheckMate 649: Subgroup Analysis

Overall survival

PD-L1 CPS ^a	Number of patients	Median OS,	months	Unstratified HR	Unstratified HP (05% CI)	
		NIVO + chemo	Chemo	for death		
Overall (N = 1581)		13.7	11.6	0.78	_	
< 1	265	13.1	12.5	0.95		
≥ 1	1297	13.8	11.3	0.75		
< 5	607	12.4	12.3	0.95		
≥ 5	955	14.4	11.1	0.69		
< 10	794	12.4	12.5	0.91		
≥ 10	768	15.0	10.9	0.66		
					0.5 NIVO + chemo	2

Objective response rate

PD-L1 CPS ^b	Number of patients	Objective responent NIVO + chemo	nse rate, % Chemo	Unweighted ORR difference, ^c %	Unweighted ORR difference, ^c % (95% Cl)
Overall (N = 1209)		58	46	12	
< 1	179	51	41	10	•
≥ 1	1016	60	46	13	
< 5	427	56	46	9	
≥ 5	768	60	45	15	
< 10	577	58	47	11	· · · · · · · · · · · · · · · · · · ·
≥ 10	618	59	44	14	· · · · · · · · · · · · · · · · · · ·
					30 25 20 15 10 5 0 -5 -10 -15 -20

NIVO + chemo < Chemo

- OS benefit with NIVO + chemo was enriched at higher PD-L1 CPS cutoffs
- ORR was higher vs chemo across all PD-L1 CPS subgroups

^aPD-L1 CPS expression indeterminate/nonevaluable/not reported, n = 19; ^bRandomized patients who had target lesion measurements at baseline, per BICR. PD-L1 CPS expression indeterminate/nonevaluable/not reported, n = 14; ^cPercentages may not reflect an exact difference due to rounding.

KEYNOTE-859: Study Design

Randomized, Double-Blind, Phase 3 Trial

- PD-L1 CPS (<1 vs ≥1)
- Choice of chemotherapy^a (FP vs CAPOX)

 Secondary End Points: PFS,^b ORR,^b DOR,^b and safety

PD-L1 CPS ≥10 populations

KEYNOTE-859: OS (Primary Endpoint)

Overall¹

PD-L1 CPS ≥1

	Pts w/ Event	Median (95% Cl), mo
Pembro + chemo	75.1%	13.0 (11.6-14.2)
Placebo + chemo	85.3%	11.4 (10.5-12.0)

PD-L1 CPS ≥10

	Pts w/ Event	Median (95% Cl), mo
Pembro + chemo	67.4%	15.7 (13.8-19.3)
Placebo + chemo	83.1%	11.8 (10.3-12.7)

KEYNOTE-859: OS in Subgroups

PD-L1 CPS ≥1

	No. Events/ No. Participants	Hazard ratio (95% CI)
Overall	990/1235	→ 0.74 (0.652-0.838)
Age		
<65 years	612/741	0.73 (0.621-0.855)
≥65 years	378/494 -	• 0.73 (0.595-0.892)
Sex		
Female	309/365	• 0.69 (0.551-0.865)
Male	681/870	• 0.74 (0.638-0.864)
Geographic region		
Asia	299/401	• 0.70 (0.556-0.877)
W Eur/Isr/N Am/Australia	272/332 -	0.76 (0.595-0.961)
Rest of world	419/502	0.76 (0.624-0.918)
ECOG performance status		
0	341/451 —	0.66 (0.535-0.823)
1	649/784	
Primary tumor location		
GEJ	235/287	• 0.71 (0.547-0.927)
Stomach	754/947	0.73 (0.634-0.844)
Histologic subtype		
Diffuse	391/456 -	0.73 (0.601-0.897)
Intestinal	345/454	0.78 (0.635-0.969)
Indeterminate	252/323	0.64 (0.494-0.822)
Disease status		
Metastatic	951/1184	0.73 (0.643-0.831)
Liver metastases		
No	572/723 -	0.71 (0.600-0.835)
Yes	417/511	0.77 (0.631-0.929)
Prior gastrectomy/esophag	ectomy	
No	839/1014	0.77 (0.674-0.885)
Yes	145/214	0.59 (0.422-0.816)
PD-L1 CPS		
≥10	414/551	► 0.64 (0.523-0.772)
1-9	574/682	0.83 (0.705-0.979)
Chemo choice at randomiza	ation	1
CAPOX	832/1056	0.72 (0.626-0.824)
FP	158/179 -	0.82 (0.601-1.125)
	0.3	1 3

PD-L1 CPS ≥10

	No. Events/ No. Participants	Hazard ratio (95% CI)
Overall	414/551	♦ 0.65 (0.532-0.787)
Age		
<65 years	247/320	• 0.67 (0.522-0.864)
≥65 years	167/231	0.59 (0.437-0.806)
Sex		
Female	123/153	0.58 (0.405-0.830)
Male	291/398	• 0.65 (0.514-0.818)
Geographic region		
Asia	126/184	0.63 (0.441-0.889)
W Eur/Isr/N Am/Australia	107/142 -	0.83 (0.565-1.213)
Rest of world	181/225	0.58 (0.431-0.784)
ECOG performance status		
0	141/202	0.58 (0.416-0.816)
1	273/349	 0.65 (0.515-0.830)
Primary tumor location		
GEJ	103/138	0.57 (0.384-0.852)
Stomach	311/413	• 0.65 (0.521-0.815)
Histologic subtype		
Diffuse	161/191	0.57 (0.415-0.779)
Intestinal	143/210 -	0.77 (0.556-1.073)
Indeterminate	109/149	0.49 (0.327-0.724)
Disease status		
Metastatic	398/526	• 0.64 (0.524-0.780)
Liver metastases		
No	245/322•	0.60 (0.464-0.769)
Yes	169/229	• 0.69 (0.511-0.940)
Prior gastrectomy/esophag	ectomy	
No	360/462	 0.65 (0.526-0.800)
Yes	53/88	0.62 (0.360-1.060)
Chemo choice at randomiza	ation	
CAPOX	351/477	0.63 (0.512-0.781)
FP	63/74	0.62 (0.378-1.029)
	0.2	
	0.3	
	Pembro +	Chemo Placebo + Chemo Better Better

KEYNOTE-859: Secondary Endpoints

Overall¹

	Pts w/ Event	Median PFS (95% Cl), mo
Pembro + chemo	72.4%	6.9 (6.3-7.2)
Placebo + chemo	77.1%	5.6 (5.5-5.7)

789 407 130 7	1	41	19	11	3	1	0	0
		Per	mbro hem) + 0	F	Plac	ebo + emo	
ORR, % (95% CI)		5 (47	1.3%	.8)	(42 38.5	.0% -45.5)
Δ (95% CI)		9.3	3 (4.4	-14.1); P =	= 0.0	0009	
mDOR (range)		8 (1.2+	.0 m) .5+)	(1	5.7 .3+ -	mo 34.7	+)

790 461 199 131 94 63 36 22 9 1 0

PD-L1 CPS ≥1

	Pts w/ Event	Median PFS (95% Cl), mo
Pembro + chemo	71.7%	6.9 (6.0-7.2)
Placebo + chemo	78.3%	5.6 (5.4-5.7)

 Months

 618
 356
 156
 112
 82
 57
 33
 21
 8
 1

 617
 317
 97
 51
 26
 11
 8
 2
 1
 0

0

0

Pembro +	Placebo +
Chemo	Chemo
52.1%	42.6%
(48.1-56.1)	(38.7-46.6)
9.5 (3.9-15.0)	; <i>P</i> = 0.00041
8.3 mo	5.6 mo
(1.2+ - 41.5+)	(1.3+ - 34.2+)
	Pembro + Chemo 52.1% (48.1-56.1) 9.5 (3.9-15.0) 8.3 mo (1.2+ - 41.5+)

PD-L1 CPS ≥10

	Pts w/ Event	Median PFS (95% Cl), mo
Pembro + chemo	68.1%	8.1 (6.8-8.5)
Placebo + chemo	77.2%	5.6 (5.4-6.7)

 279
 176
 90
 69
 52
 37
 23
 14
 3
 1
 0

 272
 138
 44
 27
 12
 6
 5
 1
 1
 0
 0

	Pembro + Chemo	Placebo + Chemo
ORR, % (95% CI)	60.6% (54.6-66.3)	43.0% (37.1-49.1)
Δ (95% Cl)	17.5 (9.3-23.5	i); <i>P</i> = 0.00002
mDOR (range)	10.9 mo (1.2+ - 41.5+)	5.8 mo (1.4+ - 31.2+)

ASCO Guidelines Recommendations

Qualifying statements:

For HER2-negative patients with gastric adenocarcinoma and PD-L1 CPS 1-5, first-line therapy with nivolumab in combination with fluoropyrimidine- and platinum-based chemotherapy may be considered on a case-by-case basis.

For HER2-negative patients with gastric adenocarcinoma and PD-L1 CPS 0, first-line therapy with fluoropyrimidine- and platinum-based chemotherapy, without the addition of nivolumab, is recommended.

1.2. For HER2-negative patients with esophageal or GEJ adenocarcinoma, first-line therapy with nivolumab for patients with PD-L I CPS \geq 5, or pembrolizumab for PD-L1 CPS \geq 10, in combination with fluoropyrimidine- and platinum-based chemotherapy is recommended.

Qualifying statements:

For HER2-negative patients with esophageal or GEJ adenocarcinoma, first-line therapy with nivolumab for patients with PD-L1 CPS 1-5, or pembrolizumab for patients with PD-L1 CPS 1-10, in combination with fluoropyrimidine-and platinum-based chemotherapy, may be recommended on a case-by-case basis.

For HER2-negative patients with gastric adenocarcinoma and PD-L1 CPS 0 or PD-L1 TPS 0%, first-line therapy with fluoropyrimidine- and platinum-based chemotherapy, without the addition of PD-1 inhibitors, is recommended.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi.

DOCTOR NAME, CREDS

Gastric/GEJ Adenocarcinoma: HER2-/PD-L1-/CLDN 18.2+

- 60-year-old man with a history of *Helicobacter pylori*+ gastritis
 5 years ago, treated and monitored for clearance
- Presents with anemia, epigastric pain with eating, and a 25pound weight loss
- EGD: Fungating mass in the gastric antrum, biopsy shows poorly differentiated adenocarcinoma
- CT scan: 3-5 cm bilobar hepatic metastases, gastric wall mass, perigastric and retroperitoneal lymph node metastases
- PMH: HTN, elevated cholesterol
- ECOG 1, lab evaluation within normal limits

Gastric/GEJ Adenocarcinoma: HER2-/PD-L1-/CLDN 18.2+ (cont'd)

- Tumor testing is HER2- by IHC, MMRp, PD-L1 CPS < 1%, claudin 18.2 90%
- NGS: p53 mutation, MSS, HER2 non-amplified
- What is optimal chemotherapy and targeted agent?
 - FOLFOX + pembro or nivo
 - FOLFOX + zolbetuximab

Minimum Biomarker Testing in a Newly Diagnosed M1 Esophagogastric Cancer

1) IHC for HER2

- 2) IHC for DNA mismatch repair protein deficiency
 - Gastric cancer: 7%
 - Esophageal cancer: < 1%
- 3) IHC for PD-L1, combined positive score
- IHC for claudin 18.2 will become standard, positive if 75% of cells +

• NGS

- Covers HER2 and other gene amplification
- Validate MSI MSS
- Tests for rare but targetable genes
 - NTRK gene fusion, BRAF V600E, RET gene fusion
- Blood-based genomic testing if tissue unavailable

Zolbetuximab and Claudin 18.2

- CLDN 18.2 is a tight junction protein that is normally expressed in gastric cells and retained in gastric/GEJ adenocarcinoma
- CLDN 18.2 may become exposed on the surface of gastric/GEJ adenocarcinoma cells, making it a promising target
- Zolbetuximab is a first-in-class chimeric IgG1 monoclonal antibody targeting CLDN 18.2 and inducing ADCC/CDC

Mechanism of Action of Zolbetuximab

SPOTLIGHT: Study Design

Global^a, randomized, double-blinded, placebo-controlled, phase 3 trial

^aStudy was conducted at 215 sites in 20 countries across Australia, Asia, Europe, N. America, and S. America; ^bBy central IHC using the analytically validated VENTANA CLDN18 (43-14A) RxDx Assay; ^cBy central or local HER2 testing; ^d800 mg/m² at cycle 1 day 1 followed by 600 mg/m² on cycle 1 day 22 and days 1 and 22 of subsequent cycles; ^ePer RECIST v1.1 by independent review committee.

SPOTLIGHT: PFS (Primary Endpoint)

PFS was significantly longer in patients treated with zolbetuximab + mFOLFOX6 vs placebo + mFOLFOX6
 Data cutoff: September 9, 2022; Median follow-up = 12.94 months (zolbetuximab + mFOLFOX6) vs 12.65 months (placebo + mFOLFOX6).

SPOTLIGHT: OS

OS was significantly longer in patients treated with zolbetuximab + mFOLFOX6 vs placebo + mFOLFOX6

Data cutoff: September 9, 2022; Median follow-up = 22.14 months (zolbetuximab + mFOLFOX6) vs 20.93 months (placebo + mFOLFOX6).

SPOTLIGHT: Response

Secondary Endpoints

	Zolbetuximab + mFOLFOX6 (N = 211)	Placebo + mFOLFOX6 (N = 211)
Patientsª, n	128	131
ORR ^b , % (95% CI)	60.7 (53.72–67.30)	62.1 (55.17–68.66)
BOR ^{c,d} , n (%)		
CR	12 (5.7)	7 (3.3)
PR	116 (55.0)	124 (58.8)
SD	45 (21.3)	52 (24.6)
PD	14 (6.6)	14 (6.6)
Median DOR ^b , months, (95% CI)	8.51 (6.80–10.25)	8.11 (6.47–11.37)
3rd quartile, months (95% CI)	29.9 (10.41–NE)	15.5 (13.27–NE)

- Response rates were similar between treatment arms
- · Formal analysis of PROs is pending
 - Initial descriptive analysis did not indicate differences between treatment arms

^aPatients with measurable disease. ^bPer RECIST version 1.1 by independent review committee; ^cPatients with non-CR/non-PD, no disease, missing data, or who could not be evaluated are not shown; ^dPatients with missing data had no post-baseline imaging assessment.

GLOW: Study Design Global^a, randomized, double-blinded, placebo-controlled, phase 3 trial

^a Study was conducted at 131 sites in 18 countries across Asia, Europe, N. America, and S. America. ^b By central IHC using the analytically validated VENTANA CLDN 18 (43-14A) RxDx Assay. ^c By central or local HER2 testing. ^d 800 mg/m² at cycle 1 day 1 followed by 600 mg/m² on day 1 of subsequent cycles. ^e 1000 mg/m² capecitabine TID on days 1 and 14 of each cycle. ^f 130 mg/m² oxaliplatin IV on day 1 of each cycle. ^g Per RECIST v1.1 by independent review committee.

Shah MA, et al. Nat Med. 2023;29(8):2133-2141.

GLOW: PFS by Independent Review Committee

PFS was significantly longer in patients treated with zolbetuximab + CAPOX vs placebo + CAPOX

Data cutoff: October 7, 2022; Median follow-up = 12.62 months (zolbetuximab + CAPOX) vs 12.09 months (placebo + CAPOX). Shah MA, et al. *Nat Med*. 2023;29(8):2133-2141.

GLOW: OS

OS was significantly longer in patients treated with zolbetuximab + CAPOX vs placebo + CAPOX

Data cutoff: October 7, 2022; Median follow-up = 17.71 months (zolbetuximab + CAPOX) vs 18.43 months (placebo + CAPOX). Shah MA, et al. *Nat Med*. 2023;29(8):2133-2141.

GLOW: Response

	Zolbetuximab + CAPOX (N = 195)	Placebo + CAPOX (N = 205)
Patients ^a , n	105	100
ORR ^b , % (95% CI)	53.8 (46.58–60.99)	48.8 (41.76–55.84)
BOR ^{c,d} , n (%)	163 (83.6)	188 (91.7)
CR	6 (3.1)	3 (1.5)
PR	99 (50.8)	97 (47.3)
SD	46 (23.6)	57 (27.8)
PD	10 (5.1)	25 (12.2)
Median DOR ^b , months, (range)	6.28 (5.39-8.28)	6.18 (4.53-6.41)

- Response rates were similar between treatment arms
- Formal analysis of PROs is pending
 - Initial descriptive analysis did not indicate differences between treatment arms

^a Patients with measurable disease. ^b Per RECIST version 1.1 by independent review committee. ^c Patients with non-CR/non-PD, no disease, missing data, or who could not be evaluated are not shown. ^d Patients with missing data had no post-baseline imaging assessment. Shah MA, et al. *Nat Med*. 2023;29(8):2133-2141.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi.

DOCTOR NAME, CREDS

Case Presentation

- 71-year-old man with new dysphagia, found to have iron deficiency, Hb: 8.1
- EGD: large fungating mass with bleeding in the lower third of the esophagus at 35 cm
- Pathology: well-differentiated adenocarcinoma
- CT chest/abdomen/pelvis showing
 - GE junction lesion extending to the gastric fundus and body
 - Multiple enlarged mediastinal and upper abdominal lymphadenopathy
 - Hepatic metastases

Case Presentation (cont'd)

Biomarker testing

- HER2 IHC: 3+
- PD-L1 CPS: 2
- Started FOLFOX + trastuzumab + pembrolizumab
- Improvement in dysphagia after first cycle
- CT chest/abdomen/pelvis after 3 months showed a partial response with decrease in size of hepatic mets

ToGA study: Targeting HER2 With Trastuzumab

Phase 3, randomized, open-label, international, multicenter study

OS Was Improved in Patients With High HER2 Expression

	HR (9	5% CI)	Number of patients	Median overall survival (months)	HR (95% CI)
All	⊢♠-		584	13-8 vs 11-1	0.74 (0.60-0.91)
Pre-planned	•				
exploratory analysis*					
IHC 0/FISH positive	+		61	10-6 vs 7-2	0.92 (0.48-1.76)
IHC 1+/FISH positive		•	70	8-7 vs 10-2	1.24 (0.70-2.20)
IHC 2+/FISH positive	⊢ ♦	4	159	12-3 vs 10-8	0.75 (0.51-1.11)
IHC 3+/FISH positive	⊢ ♦ –		256	17·9 vs 12·3	0.58 (0.41-0.81)
IHC 3+/FISH negative			15	17·5 vs 17·7	0.83 (0.20-3.38)
Post-hoc					
exploratory analysis†					
IHC 0 or 1+/FISH positive		←	131	10-0 vs 8-7	1.07 (0.70-1.62)
IHC 2+/FISH positive or IHC	3+ ⊢♠⊣		446	16-0 vs 11-8	0.65 (0.51-0.83)
Envour tracturing	0-2 0-4 0-6 1	2 3	4 5		
ravours trastuzuma	to pius chemotherapy	ravours chemo	unerapy alone		

Bang YJ, et al. *Lancet*. 2010;376(9742):687-697.

Improved OS With High HER2 Expression

Bang YJ, et al. Lancet. 2010;376(9742):687-697.

KEYNOTE-811: Study Design

^aTrastuzumab dose: 6 mg/kg IV Q3W following an 8 mg/kg loading dose. FP dose: 5-fluorouracil 800 mg/m² IV on D1-5 Q3W + cisplatin 80 mg/m² IV Q3W. CAPOX dose: capecitabine 1000 mg/m² BID on D1-14 Q3W + oxaliplatin 130 mg/m² IV Q3W.

BICR, blinded independent central review; CPS, combined positive score (number of PD-L1-staining cells [tumor cells, lymphocytes, macrophages] divided by the total number of viable tumor cells, multiplied by 100).

KEYNOTE-811: First Interim Results

Variable	Pembrolizumab group (n = 133)	Placebo group (<i>n</i> = 131)
Objective response (% (95% confidence interval))ª	74.4 (66.2–81.6)	51.9 (43.0–60.7)
Disease control (% (95% confidence interval)) ^b	96.2 (91.4–98.8)	89.3 (82.7–94.0)
Best overall response (number (%))		
Complete response	15 (11.3)	4 (3.1)
Partial response	84 (63.2)	64 (48.9)
Stable disease	29 (21.8)	49 (37.4)
Progressive disease	5 (3.8)	7 (5.3)
Not evaluable ^c	0 (0.0)	2 (1.5)
Not assessed ^c	0 (0.0)	5 (3.8)

KEYNOTE-811: PFS in Subgroups

	Events/patients, n/N			HR (95% CI)
	Pembrolizumab group	Placebo group		
Age, years				
<65	152/205	153/192		0.67 (0.54–0.85)
≥65	101/145	108/156		0.84 (0.64–1.10)
Sex				
Female	42/66	55/68		0.49 (0.32-0.74)
Male	211/284	206/280		0.83 (0.69–1.01)
Race				
Asian	76/119	80/121		0.85 (0.62–1.16)
Non-Asian	177/231	179/225		0.69 (0.56–0.84)
Geographical region				
Europe, North America, and Australia	84/113	88/111		0.73 (0.54–0.99)
Asia	75/118	78/119		0.84 (0.61–1.16)
Rest of world	94/119	95/118		0.65 (0.49–0.87)
PD-L1 status				
CPS≥1	217/298	225/296	-	0.71 (0.59-0.86)
CPS<1	36/52	36/52		1.03 (0.65–1.64)
Rest of world PD-L1 status CPS≥1 CPS<1	94/119 217/298 36/52	95/118 225/296 36/52		0.65 (0.49 0.71 (0.59- 1.03 (0.65-

KEYNOTE-811: Third Interim Results

PD-L1 CPS ≥1

On May 1, 2024, Merck announced that KEYNOTE-811 met the dual primary endpoint of overall survival.

Janjigian YY, et al. Lancet. 2023;402(10418):2197-2208.

Summary

- ToGA established doublet chemotherapy and trastuzumab as standard first-line therapy for HER2+ gastroesophageal adenocarcinoma
- KEYNOTE-811 showed a PFS and OS benefit with the addition of pembrolizumab with doublet chemotherapy and trastuzumab for PD-L1 CPS ≥1 disease

Gastric/GEJ Adenocarcinoma: HER2-/PD-L1+/CLDN 18.2+, Prior Peri-Op CPI

- 55-year-old man presents with fatigue, anemia, epigastric pain, and weight loss
- History of AODM, HTN, elevated cholesterol
- Endoscopy: proximal gastric mass, biopsy adenocarcinoma, MMRp, HER2-, PD-L1+
- CT scan: gastric mass with no metastases
- EUS: T3 N1
- Laparoscopy: no metastases
- Enrolled on KEYNOTE-585: perioperative 5-FU/cisplatin + placebo or pembrolizumab, 3 pre/3 post-op cycles + 11 cycles placebo/pembro
 - Complicated by a skin rash, hypothyroidism
- Resection: T2N0 disease

Gastric/GEJ Adenocarcinoma: HER2-/PD-L1+/CLDN 18.2+ (cont'd)

- 7 months after treatment, abdominal pain, weight loss
- CT scan: bilobar hepatic metastases, ascites
- Liver biopsy: recurrent adenocarcinoma, HER2-, PD-L1+ CPS 5%, MMRp, claudin 18.2+ at 80%
- Exam is normal, ECOG 1, lab values within normal limits
- NGS: p53 mutation, MSS, HER2 non-amplified
- What is optimal chemotherapy and targeted agent?
 - FOLFOX + pembro or nivo
 - FOLFOX + zolbetuximab

KEYNOTE-585: Study Design (Main Cohort)

KEYNOTE-585 Study Design

Randomized, Double-Blind, Phase 3 Trial of Neoadjuvant and Adjuvant Pembrolizumab Plus Chemotherapy Versus Placebo Plus Chemotherapy in G/GEJ Adenocarcinoma (Main Cohort)

- Geographic region (Asia versus non-Asia)
- Tumor staging (II vs III vs IVa)
- Chemotherapy backbone (XP/FP vs FLOT)

• Primary: pathCR rate per BICR, EFS per investigator, OS (main cohort), safety (FLOT) Key secondary: safety (main cohort), safety, OS, EFS (main plus FLOT cohort)

^aPD-L1 status was centrally assessed; ^bMain cohort. ^cAn additional 203 patients were randomized 1:1 to a separate FLOT cohort evaluating pembrolizumab + FLOT vs placebo + FLOT (5-FU 2600 mg/m², oxaliplatin 85 mg/m², docetaxel 50 mg/m²) Q2W for up to 4 cycles in the neoadjuvant and adjuvant phases. XP: cisplatin 80 mg/m² IV on d1 and capecitabine 1000 mg/m² orally BID from d1 – d14. FP: cisplatin 80 mg/m² IV on d1 and 5-FU 800 mg/m² IV from d1 – d5 up to 4000 mg/m².

KEYNOTE-585: Study Design (FLOT Cohort)

KEYNOTE-585 Study Design

Randomized, Double-Blind, Phase 3 Trial of Neoadjuvant and Adjuvant Pembrolizumab Plus Chemotherapy Versus Placebo Plus Chemotherapy in G/GEJ Adenocarcinoma (**FLOT Cohort**)

^aPD-L1 status was centrally assessed; ^b203 patients were randomized 1:1 to a separate FLOT cohort evaluating pembrolizumab + FLOT vs placebo + FLOT (5-FU 2600 mg/m², leucovorin 200 mg/m², oxaliplatin 85 mg/m², docetaxel 50 mg/m²) Q2W for up to 4 cycles in the neoadjuvant and adjuvant phases.

Shitara K, et al. Lancet Oncol. 2024;25(2):212-224.

KEYNOTE-585: EFS and OS

Shitara K, et al. Lancet Oncol. 2024;25(2):212-224.

KEYNOTE-585: pCR (FLOT Cohort)

Pathological Complete Responses Assessed by Blinded, Independent Central Review

KEYNOTE-585: EFS (FLOT Cohort)

Event-Free Survival: FLOT Cohort

Al-Batran SE, et al. ASCO GI 2024. Abstract 247.

KEYNOTE-585: OS (FLOT Cohort)

Overall Survival: FLOT Cohort

Zolbetuximab and Claudin 18.2

- CLDN 18.2 is a tight junction protein that is normally expressed in gastric cells and retained in gastric/GEJ adenocarcinoma
- CLDN 18.2 may become exposed on the surface of gastric/GEJ adenocarcinoma cells, making it a promising target
- Zolbetuximab is a first-in-class chimeric IgG1 monoclonal antibody targeting CLDN 18.2 and inducing ADCC/CDC

Mechanism of Action of Zolbetuximab

SPOTLIGHT: Study Design

Global^a, randomized, double-blinded, placebo-controlled, phase 3 trial

^aStudy was conducted at 215 sites in 20 countries across Australia, Asia, Europe, N. America, and S. America; ^bBy central IHC using the analytically validated VENTANA CLDN18 (43-14A) RxDx Assay; ^cBy central or local HER2 testing; ^d800 mg/m² at cycle 1 day 1 followed by 600 mg/m² on cycle 1 day 22 and days 1 and 22 of subsequent cycles; ^ePer RECIST v1.1 by independent review committee.

SPOTLIGHT: PFS (Primary Endpoint)

Primary Endpoint: PFS by Independent Review Committee

• PFS was significantly longer in patients treated with zolbetuximab + mFOLFOX6 vs placebo + mFOLFOX6 Data cutoff: September 9, 2022; Median follow-up = 12.94 months (zolbetuximab + mFOLFOX6) vs 12.65 months (placebo + mFOLFOX6).

SPOTLIGHT: OS

Key Secondary Endpoint: OS

Zolbetuximab +

Placebo +

OS was significantly longer in patients treated with zolbetuximab + mFOLFOX6 vs placebo + mFOLFOX6

Data cutoff: September 9, 2022; Median follow-up = 22.14 months (zolbetuximab + mFOLFOX6) vs 20.93 months (placebo + mFOLFOX6).

SPOTLIGHT: Response

Secondary Endpoints

	Zolbetuximab + mFOLFOX6 (N = 211)	Placebo + mFOLFOX6 (N = 211)
Patientsª, n	128	131
ORR ^b , % (95% CI)	60.7 (53.72–67.30)	62.1 (55.17–68.66)
BOR ^{c,d} , n (%)		
CR	12 (5.7)	7 (3.3)
PR	116 (55.0)	124 (58.8)
SD	45 (21.3)	52 (24.6)
PD	14 (6.6)	14 (6.6)
Median DOR ^b , months, (95% CI)	8.51 (6.80–10.25)	8.11 (6.47–11.37)
3rd quartile, months (95% CI)	29.9 (10.41–NE)	15.5 (13.27–NE)

- Response rates were similar between treatment arms
- Formal analysis of PROs is pending
 - Initial descriptive analysis did not indicate differences between treatment arms

^aPatients with measurable disease. ^bPer RECIST version 1.1 by independent review committee; ^cPatients with non-CR/non-PD, no disease, missing data, or who could not be evaluated are not shown; ^dPatients with missing data had no post-baseline imaging assessment.

GLOW: Study Design Global^a, randomized, double-blinded, placebo-controlled, phase 3 trial

^a Study was conducted at 131 sites in 18 countries across Asia, Europe, N. America, and S. America. ^b By central IHC using the analytically validated VENTANA CLDN 18 (43-14A) RxDx Assay. ^c By central or local HER2 testing. ^d 800 mg/m² at cycle 1 day 1 followed by 600 mg/m² on day 1 of subsequent cycles. ^e 1000 mg/m² capecitabine TID on days 1 and 14 of each cycle. ^f 130 mg/m² oxaliplatin IV on day 1 of each cycle. ^g Per RECIST v1.1 by independent review committee.

Shah MA, et al. Nat Med. 2023;29(8):2133-2141.

GLOW: PFS by Independent Review Committee

PFS was significantly longer in patients treated with zolbetuximab + CAPOX vs placebo + CAPOX

Data cutoff: October 7, 2022; Median follow-up = 12.62 months (zolbetuximab + CAPOX) vs 12.09 months (placebo + CAPOX). Shah MA, et al. *Nat Med*. 2023;29(8):2133-2141.

GLOW: OS

OS was significantly longer in patients treated with zolbetuximab + CAPOX vs placebo + CAPOX

Data cutoff: October 7, 2022; Median follow-up = 17.71 months (zolbetuximab + CAPOX) vs 18.43 months (placebo + CAPOX). Shah MA, et al. *Nat Med*. 2023;29(8):2133-2141.

GLOW: Response

	Zolbetuximab + CAPOX (N = 195)	Placebo + CAPOX (N = 205)
Patients ^a , n	105	100
ORR ^b , % (95% CI)	53.8 (46.58–60.99)	48.8 (41.76–55.84)
BOR ^{c,d} , n (%)	163 (83.6)	188 (91.7)
CR	6 (3.1)	3 (1.5)
PR	99 (50.8)	97 (47.3)
SD	46 (23.6)	57 (27.8)
PD	10 (5.1)	25 (12.2)
Median DOR ^b , months, (range)	6.28 (5.39-8.28)	6.18 (4.53-6.41)

- Response rates were similar between treatment arms
- Formal analysis of PROs is pending
 - Initial descriptive analysis did not indicate differences between treatment arms

^a Patients with measurable disease. ^b Per RECIST version 1.1 by independent review committee. ^c Patients with non-CR/non-PD, no disease, missing data, or who could not be evaluated are not shown. ^d Patients with missing data had no post-baseline imaging assessment. Shah MA, et al. *Nat Med*. 2023;29(8):2133-2141.