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Abstract: Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death globally. 
Omega-3 polyunsaturated fatty acids (PUFAs) including eicosapentaenoic acid and docosahexaenoic 
acid have been extensively studied as both dietary supplement and pharmaceutical agent for the pre- 
vention of ASCVD. Epidemiological and retrospective studies have long shown the inverse relationship 
of omega-3 PUFA consumption and ASCVD event but results of previous large randomized controlled 
trials have not consistently shown the same effect. Meta-analysis and a recent clinical trial using a high 
dose of eicosapentaenoic acid showed convincing protective effects of omega-3 PUFAs on ASCVD. 
Emerging evidence shows that both chronic inflammation and hypertriglyceridemia increase the risk of 
atherosclerosis. Amelioration of the inflammatory process and reduction of hypertriglyceridemia provide 
two mechanisms on the prevention and management of ASCVD, and agents with both of these effects 
are more potent and desirable. Omega-3 PUFAs exert anti-hypertriglyceridemia effect, ameliorate in- 
flammation, and maintain the resolution of inflammation homeostasis pleiotropically through multiple 
molecular and cellular mechanisms. This review presents the pathophysiology of atherosclerosis, the 
mechanisms of omega-3 PUFAs on the reduction of the atherosclerotic risk, and the current clinical 
utilities of omega-3 PUFAs on the prevention of ASCVD. 

© 2021 National Lipid Association. Published by Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Introduction 

Atherosclerotic cardiovascular disease (ASCVD) is de-
fined as acute coronary syndrome, stable angina, history
of myocardial infarction, coronary or other arterial revas-
cularization, ischemic stroke, transient ischemic attack, or
peripheral arterial disease presumed to be of atherosclerotic
origin. 1 Despite continuous advances in medical interven-
tion and surgical therapy for the treatment of ASCVD, the
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latter remains the leading cause of morbidity and mortality
globally. In the United States, nearly 808,000 people died of
ASCVD in 2014, translating to about 1 of every 3 deaths, 2

and the death rate from ASCVD rose in 2015 by 1%, the first
since 1999. 3 Preventive measures that reduce ASCVD by
even a small percentage can substantially reduce, nationally
and globally, the number of people who develop ASCVD. 

Both eicosapentaenoic acid (EPA; 20:5n-3) and docosa-
hexaenoic acid (DHA; 22:6n-3) are derived from α-linolenic
acid (18:3n-3) and mostly produced by marine algae on
which fish feed. EPA and DHA, commonly referred to as
omega-3 polyunsaturated fatty acids (PUFAs), are among
the most extensively studied nutrients for their potential
ts reserved. 
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clinical applications. The increased dietary intake and
higher blood levels of omega-3 PUFAs have been linked
with ASCVD risk reduction and greater longevity in the
historical large cohort studies. 4 , 5 The erythrocyte omega-3
index (a direct measurement of EPA + DHA as a percentage
of total fatty acids in erythrocytes) has been proposed as a
risk biomarker for cardiovascular disease. 6 In Framingham
Offspring Study, those in the highest quintile of erythrocyte
omega-3 index ( > 6.8%) compared to those in the lowest
quintile ( < 4.2%) had a 39% lower risk for incident car-
diovascular disease and 34% lower risk for death from any
causes. 4 Investigators in the Cardiovascular Health Study
found that plasma phospholipid omega-3 PUFA levels were
also inversely associated with mortality rates. 5 However,
reports of observational studies would need the supportive
evidence of mechanism studies and the confirmation from
randomized, controlled clinical trials. 

This review presents the evidence that formation of
atherosclerosis could be accelerated by both hypertriglyc-
eridemia and chronic inflammation, which are two patho-
logical conditions with reciprocal exacerbation, and that
the protective effects of omega-3 PUFAs on ASCVD are
mediated, in part, by curbing both hypertriglyceridemia
and inflammation. For the purposes of this review, omega-3
PUFAs are considered to be those derived from marine
sources, exemplified by EPA and DHA. 

Both inflammation and hypertriglyceridemia 

accelerate atherosclerosis 

Atherosclerosis is a chronic immunoinflammatory, fi-
broproliferative disease of large and medium-sized arteries
fueled by lipids. The influence of dyslipidemia on the de-
velopment of cardiovascular diseases was initially revealed
in rabbits fed with high fat diet in a study a century ago by
Anichkov. 7 The Framingham Heart Study in the 1950s con-
firmed that hypercholesterolemia accelerated atherosclerosis
in humans. 8 , 9 Atherosclerosis, however, does not simply
result from the lipid disposition. Inflammation also plays a
pivotal role in the pathogenesis of cardiovascular disease. 10 

Dyslipidemia causes hematopoietic stem and progenitor
cells to proliferate, leading to leukocytosis, and proliferation
of immune cells is indispensable for the development of
atherosclerotic lesions in humans. 11 , 12 Atherosclerosis is
neither exclusively an inflammatory disease nor solely a
lipid disorder; it is both. 

Inflammation and atherosclerosis 

Inflammation is a protective mechanism to external and
internal challenges to homeostasis, such as infection and
injury. A successful inflammatory reaction to stress engages
various mechanisms to maintain physiologic functions and
restore homeostasis. 13 However, chronic non-resolving in-
flammation in response to pathologic stress is a major driver
of numerous diseases including cardiovascular diseases.
The causal relationship of inflammation and atherosclerosis
has been inferred from the pathophysiology of atheroscle-
rosis formation. C-reactive protein (CRP), an acute-phase
reactant protein produced predominantly in hepatocytes and
driven primarily by interleukin (IL)-6, localizes directly in
the atherosclerotic plaques where it induces the expression
of genes involved in the adhesion of monocytes such as
E-selectin and monocyte chemoattractant protein-1. 14 CRP
has also been shown to play a role in mediating LDL uptake
in macrophages and activating the complement system,
which is implicated in atherogenesis. 15 Though the causal
relationship of CRP level and coronary heart disease has
not been shown in a Mendelian randomization analysis, 16 

the baseline plasma levels of CRP are predictive of future
cardiovascular events. 17 

Identification of an effective treatment specifically tar-
geting inflammation has shed light on the central role
of inflammation in the pathogenesis of atherosclerosis. In
the Canakinumab Antiinflammatory Thrombosis Outcome
Study (CANTOS), canakinumab, a fully humanized mono-
clonal antibody against IL-1 β with no effects on atherogenic
lipid, led to a 15% lower risk of cardiovascular events than
was observed with placebo in participants with baseline high-
sensitivity CRP (hs-CRP) at 4.2 mg/L (the approximate 90th
percentile of the normal distribution), providing a proof of
inflammation causality in ASCVD. 18 , 19 On the contrary, in
the Cardiovascular Inflammation Reduction Trial (CIRT) in
a population with a median hs-CRP level of only 1.6 mg/L
at baseline, methotrexate (a dihydrofolate reductase inhibitor
widely used in treatment for inflammatory conditions such
as rheumatoid arthritis) did not reduce IL-1 β, IL-6 or hs-
CRP versus placebo and did not significantly reduce ASCVD
events. 20 The knowledge that atherosclerosis is an inflamma-
tory disease offers new opportunities for the prevention and
treatment of cardiovascular disease. 

Hypertriglyceridemia and atherosclerosis 

Hypertriglyceridemia is becoming increasingly prevalent,
concurrent with growing rates of obesity and diabetes melli-
tus. 21 Plasma triglyceride level serves as a surrogate measure
of both triglyceride-rich lipoproteins (including IDL, VLDL,
and chylomicron) and remnant cholesterol (the cholesterol
content of triglyceride-rich lipoprotein remnant). 22 The lev-
els of remnant cholesterol particles and triglycerides are
highly correlated, and these remnant particles can both pen-
etrate the arterial intima and bind to and be retained by the
connective tissue matrix and can be further taken up by arte-
rial macrophages. 23 

Hypertriglyceridemia has been linked to the progres-
sion of coronary artery disease by directly contributing to
atherosclerotic plaque formation and progression. 24 In 1959,
Albrink and Man 

25 found high serum levels of triglyceride
in men with a history of myocardial infarction and proposed
hypertriglyceridemia as a cause of coronary heart disease.
In early 1990s, Rapp et al. 26 isolated and characterized
immunoreactive apoB-containing lipoprotein particles from
human atherosclerotic plaques. These apoB-100 species
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were present in significant amounts of VLDL and IDL, as
much as in the LDL fraction. This study suggested that
both VLDL and IDL had the potential of entering human
atherosclerotic plaques as the origin of apoB-100 in spite of
being larger in size than LDL particles. 

The risk of hyperglyceridemia to atherosclerotic disease
has also been inferred from the studies on individuals with
inherited hypertriglyceridemia. 27-33 Familial combined hy-
perlipidemia (FCHL) is characterized by increased levels
of both cholesterol and triglyceride due to overproduction
of ApoB-100 protein, while familial hypertriglyceridemia
(FHTG) is a polygenic disorder characterized by moderate
hypertriglyceridemia due to the decreased activity of lipopro-
tein lipase (LPL). Case-control study found virtually iden-
tical risks with an odds ratio of 2.0 for premature coronary
artery disease risk between FCHL and FHTG, suggesting the
evidentiary role of hypertriglyceridemia in being a risk factor
for atherosclerosis. 27 

Mendelian randomization and genome-wide studies
found that loss-of-function mutations in LPL gene are asso-
ciated with higher plasma triglyceride levels 28 and a higher
risk of cardiovascular disease, 29 while loss-of-function mu-
tations in APOC3, 30 ANGPTL3, 31 and ANGPTL4 

32 genes, all
of which encode for natural inhibitors of LPL, are associated
with lower triglyceride levels and corresponding lower risk
of cardiovascular disease and all-cause mortality, suggesting
the causal relationship of hypertriglyceridemia and cardio-
vascular diseases. By analyzing the associations of genetic
scores composed of triglyceride-lowering variants in the
LPL gene and LDL-C-lowering variants in the LDL receptor
gene with the risk of cardiovascular events among 654,783
participants enrolled in 63 cohort or case-control studies,
Ference et al 33 found that triglyceride-lowering LPL variants
and LDL-C-lowering LDL receptor variants were associated
with similar lower risk of coronary heart disease per unit
lower level of ApoB-containing lipoprotein, suggesting the
clinical benefit of lowering triglyceride and LDL-C levels
may be proportional to the absolute change in ApoB. 

Bidirectional association of 
hypertriglyceridemia and inflammation 

The 2018 American Heart Association (AHA)/American
College of Cardiology/Multi-society Cholesterol Guideline
identifies both persistent moderate hypertriglyceridemia ( >
175 mg/dL) and inflammation as “risk-enhancing factor”
to be considered in the clinician-patient risk discussion,
the presence of which favors the initiation or intensifica-
tion of statin therapy. The inflammation could be either
an inflammatory disease (e.g., rheumatoid arthritis, psori-
asis, or HIV) or elevated inflammatory marker hs-CRP. 1

Hypertriglyceridemia and inflammation, however, are of-
ten interconnected. The bidirectional crosstalk between
hypertriglyceridemia and inflammation that may lead
to the reciprocal enhancement could be involved in the
pathogenesis of atherosclerosis. 
Hypertriglyceridemia enhances inflammation 

Persistent hypertriglyceridemia enhances the inflamma-
tory state. Studies have shown hypertriglyceridemia is as-
sociated with increased levels of both inflammatory mark-
ers such as CRP and inflammatory cells including foamy
monocytes. 34 The elevated triglyceride-rich lipoproteins in
postprandial state are associated with endothelial dysfunc-
tion, foamy cell formation, and the expression of proinflam-
matory genes including vascular cell adhesion molecule-1,
P-selectin, and IL-6 in both hypertriglyceridemic and nor-
moglyceridemic individuals. 35 , 36 Several mechanisms in-
cluding adipose dysfunction, insulin resistance, and “lipid
triad” (i.e., the combination of elevated triglycerides, low
HDL level, and presence of small, dense LDL particles) have
been proposed to account for hypertriglyceridemia-induced
inflammation. 

Triglycerides are mainly stored in adipose tissue, and
chronic hypertriglyceridemia triggers adipogenic signaling
that eventually remodels the white adipose tissues including
hyperplasia and hypertrophy of adipocytes. Remodeling of
white adipose tissue increases adipocyte oxygen demand
and impairs innervation and vascularization, subsequently
resulting in hypoxia, adipocyte dysfunction and eventually
lipolysis and hydrolysis of triglycerides. 37 , 38 Hydrolysis of
triglycerides generates a host of pro-inflammatory mediators,
including diacylglycerols (DAG) and free fatty acids. 39 , 40 

DAG binds and activates protein kinase C isoform ε

(PKC ε), and the activated PKC ε is translocated to the plasma
membrane, where it binds to and phosphorylates Thr160 of
insulin receptor, thereby inhibiting insulin receptor kinase
activity. The inactivated insulin receptor attenuates the ac-
tivities of proteins involved in glucose uptake (e.g., AS160
and TXNIP), glycogen synthesis (e.g., GSK3), and glycol-
ysis (e.g., aldolase A) via suppression of PI(3)K signaling
pathway, resulting in hyperglycemia. 41 In addition to the
impaired insulin signaling of DAG/PKC ε/insulin receptor
pathway, other less well defined mechanisms, including C2-
ceramide inhibition of AKT and incomplete fatty acid oxida-
tion, might also account for triglyceride-induced insulin re-
sistance and hyperglycemia. 41 Hyperglycemia produces non-
enzymatic chemical modification to membrane proteins and
phospholipids, leading to advanced glycation end products,
oxidative stress and cell injury. 42 

On the other hand, the free fatty acids released from
lipolysis are re-esterified in the liver to form triglycerides
and account for hepatic lipogenesis and VLDL secretion. 43 ,

44 Triglycerides in the large VLDL particles are exchanged
for cholesterol esters in LDL and HDL by the cholesterol es-
ter transfer protein, producing cholesterol-depleted LDL and
HDL. Triglycerides in the core of LDL and HDL are then hy-
drolyzed by hepatic lipase, producing both small, dense LDL
and smaller HDL. Small HDL is more likely to be excreted
by the kidney, resulting in low HDL levels. Both low HDL-
C level and small, dense LDL particles are associated with
inflammation and patients with “lipid triad” tend to develop
vulnerable plaques. 45 
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Hypertriglyceridemia, along with increased waist circum-
ference, insulin resistance, elevated blood pressure, and low
HDL-C level, are five factors of metabolic syndrome, with
a tally of three needed for the diagnosis. As individuals
with persistent hypertriglyceridemia often acquire insulin
resistance and have lower HDL-C level, these individuals
frequently develop metabolic syndrome. Individuals with
metabolic syndrome have decreased plasma concentration of
adiponectin and increased leptin levels. 46 , 47 Adiponectin has
anti-inflammatory properties and downregulates the expres-
sion and release of a number of proinflammatory immune
mediators. In contrast, leptin upregulates proinflammatory
cytokines such as tumor necrosis factor- α (TNF- α) and IL-6.
Of all five metabolic syndrome factors, hypertriglyceridemia
has the strongest association with cardiovascular risk based
on analysis of the Third National Health and Nutritional
Examination Survey data. 48 

Studies suggest that people with hypertriglyceridemia in
addition to hypercholesterolemia may have higher degree of
inflammation in atherosclerosis arteries than in people with
hypercholesterolemia only. This was evidenced in recent
studies on the degree of inflammation and atherosclerotic
burden by comparing between heterozygous familial hyper-
cholesterolemia (HeFH) and FCHL patients. HeFH is an
autosomal dominant inherited disorder of LDL metabolism,
resulting in significantly elevated LDL-C, while FCHL is
a familial lipoprotein disorder characterized by both hy-
percholesterolemia and hypertriglyceridemia as described
above. Jarauta et al 49 found that FCHL subjects had a higher
number of smaller LDL than those with HeFH. Toutouzas
et al 50 further reported that more intense inflammation
activity was found in FCHL patients than in HeFH patients
as evidenced by radioactivity uptake in PET scanning with
18-F-fluorodeoxyglucose (FDG) labeling. The FDG uptake
was correlated with inflammatory biomarkers including
CRP and fibrinogen levels in individual patients. 51 These
results suggest that people with high triglycerides in addi-
tion to high cholesterol may have increased inflammation in
atherosclerotic arteries and are more vulnerable thus leading
to acute coronary events than those with only elevated
cholesterol level. 50 Not surprisingly, it has been reported
that triglyceride-rich lipoprotein is causally associated with
ischemic heart disease with chronic inflammation, whereas
elevated LDL-C is associated causally with ischemic heart
disease without inflammation. 23 

Inflammation propagates hypertriglyceridemia 

Persistent hypertriglyceridemia causes inflammation, and
vice versa. Acute infections including bacteremia, 52 chronic
inflammatory diseases such as rheumatoid arthritis, 53 sys-
temic lupus erythematosus, 54 and psoriasis, 55 and hyperin-
flammatory syndromes such as secondary hemophagocytic
lymphohistiocytosis all cause elevated serum triglyceride
levels. Hypertriglyceridemia has been proposed as a marker
for an inflammatory state. 34 Treatment of the underlying
infection and inflammatory disease results in a resolution
of hypertriglyceridemia. 56 Elevated triglyceride levels have
also been observed following the acute administration of cy-
tokines. Following a single administration of an inflamma-
tory cytokine such as TNF or IL-1 in the rat, an increase in
serum triglyceride and VLDL levels can be seen within 2 h
and sustained for at least 24 h. 57 

The increase of serum triglyceride during an inflamma-
tion process is due to both an increase in hepatic VLDL
production and secretion and a decrease in the clearance
of triglyceride-rich lipoproteins. Infection and inflammation
cause increased secretion of adrenocorticotropic hormone
and catecholamines, 58 both of which increase lipolysis in adi-
pose tissue. 59 An increase in adipose tissue lipolysis provides
an increased supply of fatty acids in the liver that stimulate
an increase in hepatic triglyceride synthesis. The increased
availability of triglycerides leads to the increased formation
and secretion of VLDL. On the other hand, the decrease in
clearance of triglyceride-rich lipoproteins is likely due to re-
duced LPL activity. A variety of cytokines have been shown
to decrease the synthesis of LPL in adipose and muscle tis-
sues. 60 Studies of mice and adipocytes have also shown that
inflammation increases angiopoietin like protein 4, an in-
hibitor of LPL activity, which would block the catabolism
of triglyceride-rich lipoproteins. 61 

Understandably, agents with both triglyceride-lowering
and anti-inflammatory properties are more potent in reducing
atherosclerotic lesions than agents with only a single prop-
erty. The following sections present the possible mechanisms
of omega-3 PUFA effects on lowering both triglyceride level
and inflammation. 

Effect of omega-3 PUFAs on 

hypertriglyceridemia 

Both observational studies 62 , 63 and randomized clinical
trials 64 , 65 have shown the marked triglyceride lowering ef-
fect of omega-3 PUFAs in humans. The effect was first ob-
served in a cross-over study in which healthy adults who
were fed with a fat fish (mackerel) diet which was equiva-
lent to a daily uptake of 8 g of omega-3 PUFAs had serum
triglycerides 35% lower than those who were on a control
diet in which the fish was replaced by full-fat cheese. 62 A
similar study in Greenland Eskimos found that individuals
who were on a diet with salmon oil supplement containing
considerable amount of omega-3 PUFA had 37% lower lev-
els of triglyceride than those who were on vegetable oil diet
high in linoleic acid (18:2n-6) or on controlled diet high in
saturated fat. 63 

Subsequent large randomized controlled trials tested the
effect of omega-3 PUFA supplement in more purified forms.
A daily supplement of 850 mg omega-3 PUFAs reduced
triglyceride levels by 14.5 mg/dL ( P < 0.001) in the Out-
come Reduction with Initial Glargine Intervention (ORIGIN)
trial 64 and by 8.1 mg/dL ( P < 0.0001) in the Risk and Preven-
tion Study. 65 The triglyceride-lowering effect ranged from
3.1% to 7.2% if omega-3 PUFA was taken at dose of 200
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to 500 mg/day. With higher intakes at 2.0 to 4.0 g/day, the
triglyceride-lowering effect ranges from 20% to 35% and
even up to 45% in individuals with very high serum triglyc-
eride level ( > 500 mg/dL). 66 

Targeting triglyceride-rich lipoprotein represents a new
frontier for modulating ASCVD risk. Because statins alter
the lipid profile primarily by lowering LDL-C, omega-3
PUFAs that ameliorate hypertriglyceridemia and reduce
triglyceride-rich lipoproteins and their remnants may ad-
dress the residual risk of clinical ASCVD that persists in the
statin era. Coronary plaque regression was observed in statin-
treated patients taking 1.8 g/day EPA in the Combination
Therapy of Eicosapentaenoic Acid and Pitavastatin for Coro-
nary Plaque Regression Evaluated by Integrated Backscatter
Intravascular Ultrasonography (CHERRY) study. 67 The
2002 AHA Scientific Statement on Fish Consumption, Fish
Oil, Omega-3 Fatty Acids, and Cardiovascular Disease
recommended 2 to 4 g of EPA + DHA per day, provided as
capsules under a physician’s care, for patients who need to
lower their triglyceride levels. 68 Since 2004, several types of
prescription omega-3 PUFAs have been approved by the US
Food and Drug Administration (FDA) for the treatment of
very high triglyceride (i.e., ≥ 500 mg/dL). 69 The 2019 AHA
Science Advisory on Omega-3 Fatty Acids for the Manage-
ment of Hypertriglyceridemia further concluded that pre-
scription omega-3 PUFAs at a dose of 4 g/day were an effec-
tive and safe option for reducing triglycerides as monother-
apy or as an adjunct to other lipid-lowering agents. 69 

Triglyceride levels in the human body are regulated
by dietary intake, de novo biosynthesis, and triglyceride
catabolism. Omega-3 PUFAs suppress transcription of sterol
regulatory element-binding protein (SREBP) genes, thereby
inhibiting de novo synthesis of fatty acids and triglycerides.
Omega-3 PUFAs also increase fatty acid oxidation and
triglyceride catabolism in adipose and muscle tissues and
enhance triglyceride-rich lipoprotein clearance by regulation
of peroxisome proliferator-activated receptor (PPAR) gene
activity. 

Omega-3 PUFAs reduce lipogenesis via suppression
of SREBPs 

The levels of fatty acids and cholesterol in mammals are
both controlled through a feedback regulatory mechanism
mediated by transcriptional factor SREBPs that belong to a
family of basic-helix-loop-helix-leucine zipper (bHLH-LZ)
protein. There are three members of the SREBP family: 1a,
1c, and 2, all of which are synthesized as inactive precursors
bound to the endoplasmic reticulum membrane. 

SREBPs are the sensors of the status of fatty acid and
cholesterol abundance. When cells are deprived of fatty acids
or cholesterol, the mature form of SREBP is proteolytically
released from the endoplasmic reticulum for nuclear translo-
cation and binds to the sterol response element (SRE) re-
gion of the downstream lipogenic genes. The nuclear level
of SREBP, and hence the rate of lipogenic gene transcrip-
tion, are determined by the SREBP precursor transcription
and the rate of proteolytic release of the mature SREBP.
SREBP-1a and -1c are derived from different promoter sites
of the same gene, and play a pivotal role in regulation of
hepatic genes involved in triglyceride synthesis. 70 SREBP-
2 is transcribed from a separate gene and actively involved
in the transcription of enzymes in cholesterol synthesis (e.g.,
HMG-CoA synthase). 71 Studies have shown the administra-
tion of omega-3 PUFAs suppresses SERBP-1 gene expres-
sion at both transcriptional and post-transcriptional levels
[ Figure 1 ]. 

First, the expression of SREBP-1 gene is activated by the
action of heterodimer liver X receptor/retinoid X receptor
(LXR/RXR) on the LXR-responsive elements in the SREBP-
1 gene promoter, 72 and gel shift mobility and ligand bind-
ing domain activation assays demonstrated omega-3 PUFA
suppression of SREBP-1c expression is mediated through
its competition with LXR endogenous ligand in the ligand
binding domain of LXR, thereby inhibiting the formation of
LXR/RXR heterodimer (EPA > DHA). 73 Second, omega-3
PUFAs accelerate the decay of SREBP-1 mRNA. Using ri-
bonuclease protection assays, Xu et al 74 demonstrated that
PUFAs reduced the half-life of both SREBP-1a and SREBP-
1c mRNA by about 50%, and treating with the translation
inhibitor, cycloheximide, prevented the PUFA-dependent de-
cay of SREBP-1, suggesting SREBP-1 mRNA decay process
required a yet to be identified translational process. 

Mediated by decreased SREBP-1 protein levels, omega-
3 PUFAs attenuate the expression of a wide array of li-
pogenic enzymes including the fatty acid synthesis rate-
limiting enzyme acetyl-CoA carboxylase, 75 , 76 fatty acid
synthase, 76-78 malic enzyme, 77 stearoyl-CoA desaturase, 79

and the triglyceride synthesis rate-limiting enzyme diacyl-
glycerol acyl transferase. 80 The outcome of omega-3 PUFA
antagonistic activity to SREBP-1 is a lower capacity for de
novo hepatic triglyceride generation. 

Omega-3 PUFAs enhance triglyceride catabolism 

via activation of PPARs 

Belonging to members of the nuclear receptor superfam-
ily, PPARs function as a heterodimer with RXR and bind to
the specific sequence of the promoter region of target genes
called PPAR response elements (PPREs). 81 Binding of the
ligand with either receptor of the PPAR:RXR heterodimer
can activate the complex, and binding of both ligands simul-
taneously is more potent than the binding of a single ligand. 82

The activated heterodimeric complex enhances transcription
of downstream targets. 

Three closely related PPAR isotypes have been identi-
fied: PPAR α, PPAR β/ δ, and PPAR γ . 83 All of these three en-
zymes can be seen to increase the disposal of excess fatty
acids either by catabolism or by storage. PPAR α is ex-
pressed most in the liver, and hepatic PPAR α activation can
increase fatty acid oxidation and hence reduce the excess
triglyceride load in the body. PPAR β/ δ is ubiquitously ex-
pressed but has higher activity in skeletal and cardiac mus-
cles. Similar to PPAR α, PPAR β/ δ activates the expression
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Figure 1 Omega-3 PUFA suppression of SREBP1 gene expression. PUFAs attenuate SREBP1 expression via at least two mechanisms. 
Omega-3 PUFAs inhibit the formation of LXR/RXR complex and subsequent SREBP-1 precursor gene expression and promote decay of 
SREBP-1 mRNA through inhibition on a translational process that has not been characterized. LXR, liver X receptor. RXR, retinoid X 

receptor. SRE, sterol response element. SREBP1, sterol regulatory element-binding protein 1. , product or activity decreased by omega-3 
PUFAs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of genes involved in fatty acid oxidation, including those
of mitochondrial biogenesis. Animals with PPAR β/ δ over-
expression have greatly increased exercise capacity. PPAR γ

is mainly expressed in adipose tissue. Activation of PPAR γ

increases the expression of genes involved in pre-adipocyte
differentiation into adipocytes and stimulates fatty acid depo-
sition in adipocytes. 84 These genes include the key enzymes
in the fatty acid metabolism pathways, including adipocyte
fatty acid binding protein, 85 phosphoenolpyruvate carboxy-
kinase, 86 and LPL. 87 

PPARs act as receptors that have numerous endogenous
ligands with each at relatively low binding affinity. This is
different from the classic nuclear receptors that bind to a
very limited number of highly specific ligands at high affin-
ity. PPARs appear to be the sensor system that samples the
intracellular mixture of available fatty acid species whereby
dietary fatty acids can modulate lipid homeostasis. 88 Because
they play an important role in lipid homeostasis, PPARs are
called lipid sensors. The actions of PPARs underlie the im-
portance of these receptors to be pharmacological targets. 

Results from the molecular dynamic simulation study
showed that DHA binds to PPAR/RXR heterodimer with
relatively high affinity and that different PPAR isotypes
exhibited different structural effects on DHA. 89 Omega-3
PUFAs and their oxidized fatty acids at the physiological
levels can bind all three isotypes of PPARs. 81 Mediated
by the activation of PPARs, omega-3 PUFAs induce the
transcription of genes encoding mitochondrial and peroxi-
somal enzymes involved in lipid oxidation [ Figure 2 ], e.g.,
carnitine palmitoyltransferase and pyruvate dehydrogenase
kinase 4. 90 Furthermore, the transfection assay showed
omega-3 PUFAs increase the clearance of triglyceride-rich
lipoproteins by enhancement of LPL gene expression in
both adipose and muscle tissues through activation of PPAR
response element in LPL gene promoter. 91 , 92 

Anti-inflammation effect of omega-3 PUFA 

There is a strongly held belief that omega-3 PUFAs
significantly affect human health in part by modulating the
inflammatory activities. 93 A large body of evidence from ex-
perimental, 94 epidemiologic, 95 and clinical research 

96-99 has
demonstrated the potential benefit of omega-3 PUFAs on a
spectrum of inflammatory diseases including cardiovascular
disease, and the effects are often associated with reduction
of inflammatory mark ers including hs-CRP, lipoprotein-
associated phospholipase 2, and oxidized LDL. 97 At least
two mechanisms have been reported to directly mediate the
anti-inflammatory effect of omega-3 PUFAs: 1, affecting
the ratio of pro-inflammatory and anti-inflammatory en-
dogenous mediators; and 2, targeting the G-protein coupled
receptor FFAR4. 

Omega-3 PUFAs regulate the biosynthesis of 
pro-inflammatory and anti-inflammatory 

endogenous mediators 

Omega-3 and omega-6 PUFAs have different and often
opposing physiological roles. They are linked oppositely to
the regulation of inflammation via their role as precursors
for not only eicosanoids but also other families of endoge-
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Figure 2 Omega-3 PUFA activation of PPARs. Omega-3 PUFAs bind to and activate PPARs to induce transcription of genes involved in fatty 
acid β-oxidation in both peroxisome and mitochondria and of lipoprotein lipase to promote the catabolism of triglyceride-rich lipoproteins. 
PPARs, peroxisome proliferator-activated receptors. RXR, retinoid X receptor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nous chemical mediators that possess both anti-inflammatory
and protective properties [ Figure 3 ]. Eicosanoids such
as prostaglandin E2 and leukotriene B4 that are derived
from arachidonic acid (20:4n-6), an omega-6 PUFA, are
strongly pro-inflammatory, whereas eicosanoids of 3-series
prostaglandins and 5-series leukotrienes from EPA are 10-
to 100-fold less biologically active. Moreover, omega-3
PUFA-derived specialized pro-resolving mediators such as
resolvins, protectins, and maresins display protective and
beneficial effects on a variety of inflammatory diseases. 100

Since the balance of omega-3 and omega-6 PUFAs in cellu-
lar membranes is largely dependent on oral intake, higher in-
take of omega-3 PUFAs results in replacement of the usually
more abundant arachidonic acid with EPA and DHA. 101 As
intake of omega-3 PUFAs increases, omega-6 PUFA-derived
pro-inflammatory eicosanoids decrease. 102 Lipidomic analy-
sis showed increased omega-3 PUFA intake reduced the pro-
duction of omega-6 PUFA-derived eicosanoids and increased
the generation of its own metabolites including resolvins and
protectins. 103 

Omega-3 PUFAs bind to receptor FFAR4 and 

attenuate inflammation 

Free fatty acid receptor 4 (FFAR4), a G-protein cou-
pled receptor previously known as GPR120, is highly ex-
pressed in human adipocytes and macrophages [ Figure 4 ].
Initially identified as an orphan receptor, FFAR4 is now
known to be the receptor of omega-3 PUFAs. 104 , 105 Omega-
3 PUFAs bind and activate FFAR4, thereby triggering the
downstream signaling cascade. In macrophages and Kupf-
fer cells, the activation of FFAR4 initiates its association
with the scaffold protein β-arrestin-2, and the omega-3
PUFA/FFAR4/ β-arrestin-2 complex subsequently dissoci-
ates the TAK1/TAB1 heterodimer by binding to TAB1 sub-
unit. The dissolution of TAK1/TAB1 complex leads to inac-
tivation of TAK1, thereby attenuating NF- κB-mediated cy-
clooxygenase expression and inflammation. 94 

The omega-3 PUFA/FFAR4/ β-arrestin-2 complex
also inhibits NOD-like receptor protein 3 (NLRP3)
inflammasome-dependent inflammation in a study of ro-
dents and lipopolysaccharides-primed bone-marrow-derived
macrophages. 106 The attenuation of NLRP3 inflammasome
activity decreases cytokine IL-1 β level, leading to the
reduction of both IL-6 release by macrophages and CRP
production in the liver. This inhibitory pathway is specific
for omega-3 PUFAs, and omega-6 and omega-9 PUFAs
have no such effect. The NLRP3 inflammasome has now
been identified as a cross-link between inflammation and
atherosclerosis. 107 

Clinical utilities of omega-3 PUFAs in ASCVD 

Omega-3 PUFAs are theoretically desirable agents to pre-
vent atherosclerosis due to the effectiveness on both hyper-
triglyceridemia and inflammation. Results from large ran-
domized, controlled trials of omega-3 PUFAs, however, have
shown mixed results, with some suggesting cardiovascular
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Figure 3 Metabolism pathways of pro-inflammatory and anti-inflammatory PUFA derivatives. PUFAs including AA, EPA, and DHA are 
released from membrane phospholipids catalyzed by cytosolic phospholipase A 2 and give rise to a host of derivatives through metabolism cat- 
alyzed by cyclooxygenase-1, cyclooxygenase-2, and lipoxygenases, producing eicosanoids and other endogenous mediators. The eicosanoids 
including prostaglandins, thromboxanes, and leukotrienes are generally pro-inflammatory, while other families of endogenous chemical me- 
diators including resolvins, protectins, and maresins are typically produced during the resolution of inflammation and are generally termed 
“specialized pro-resolving mediators.” AA, arachidonic acid. DHA, docosahexaenoic acid. EPA, eicosapentaenoic acid. 

Figure 4 FFAR4-mediated omega-3 PUFA anti-inflammatory signal transduction pathways. Binding to omega-3 PUFAs, FFAR4 recruits 
and activates β-arrestin2, which interacts with the TAB1 protein and makes TAB1 unavailable to activate TAK1, a kinase responsible for the 
transduction of TNFR signaling. In addition, the FFAR4/ β-arrestin2 complex enlists NLRPs and suppresses NLRP3 inflammasome activation. 
FFAR4, free fatty acid receptor 4. JNK, c-jun N-terminal kinase. NF- κB, nuclear factor κ-light-chain-enhancer of activated B cells. NLRP3, 
NOD-like receptor protein 3. TAK1, transforming growth factor kinase protein-1. TAB1, TAK1 binding protein 1. TNF- α, tumor necrosis 
factor- α. TNFR, tumor necrosis factor receptor. 
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risk protections, while others failed to support the same ben-
eficial effects. 

The statistical significance in the efficacy of omega-3
PUFAs on ASCVD prevention were reported in four large
studies. They are the Gruppo Italiano per Io Studio della
Sopravvivenza nell’Infarto Miocardico (GISSI)-Prevention
study, 108 the Japan Eicosapentaenoic Acid Lipid Intervention
(JELIS trial), 109 the GISSI-Heart Failure study, 110 and the
Reduction of Cardiovascular Events with Icosapent Ethyl-
Intervention Trial (REDUCE-IT). 111 Other large studies of
omega-3 PUFAs using low dosages (median 840 mg/d of
EPA + DHA) on ASCVD prevention reported negative
results. These include the ORIGIN trial, 64 the Risk and
Prevention Study, 65 ALPHA OMEGA trial, 112 A Study of
Cardiovascular Events in Diabetes (ASCEND) trial, 113 and
the Vitamin D and Omega-3 Trial (VITAL). 114 The Out-
comes Study to Assess Statin Residual Risk Reduction
with Epanova in High CV Risk Patients with Hypertriglyc-
eridemia (STRENGTH) trial, which investigated the effects
of 4 g/day EPA and DHA in a carboxylic acid formulation,
is the most recent study that failed to meet the primary end
point in the prevention of ASCVD. 115 

A previous meta-analysis on 20 studies of 68,680 patients
showed omega-3 PUFAs achieved modest risk reduction for
cardiac death (RR 0.91, 95% CI: 0.85 – 0.98) in secondary
prevention. 116 Based on this finding, a 2017 AHA Science
Advisory stated that low-dose omega-3 PUFA supplemen-
tation was reasonable for secondary prevention of coronary
heart disease in those with recent coronary heart disease. 117

An updated meta-analysis by adding the results from recent
three large-scale RCTs of omega-3 PUFAs (REDUCE-IT,
ASCEND, and VITAL) showed a benefit of omega-3 PU-
FAs for lowering risk of most cardiovascular end points and
the risk reductions were linearly associated with the dose of
omega-3 PUFA supplementation. 118 

Of note, the REDUCE-IT trial assessed effects of
prescription-graded EPA ethyl ester (icosapent ethyl 4 g/day)
on major adverse cardiovascular events in selected high- or
very high-risk statin-treated patients with elevated triglyc-
erides. 111 In a median follow-up duration of 4.9 years, a pri-
mary end-point event occurred in 17.2% of the patients in
the icosapent ethyl group, as compared with 22.0% of the
patients in the mineral oil (i.e., light liquid paraffin) placebo
group (hazard ratio, 0.75; 95% CI, 0.68 to 0.83) – an impres-
sive 25% lower risk in the icosapent ethyl group. 111 Based
on the results of REDUCE-IT, the National Lipid Associ-
ation recommended icosapent ethyl for patients aged ≥ 45
years with clinical ASCVD, or aged ≥ 50 years with dia-
betes mellitus requiring medication plus ≥ 1 additional risk
factor, with fasting triglycerides 135 to 499 mg/dL on high-
intensity or maximally tolerated statin therapy for ASCVD
risk reduction. 93 Icosapent ethyl is also recommended to be
the first-line therapy for patients with type 2 diabetes melli-
tus and coronary artery disease whose triglycerides remain
elevated ( > 135 mg/dL) despite maximally tolerated statin
and lifestyle changes in both the 2020 AHA advisory state-
ment 119 and the American Diabetes Association Standard
 

of Medical Care in Diabetes for 2020. 120 In addition to the
treatment of very high triglyceride ( ≥ 500 mg/dL), icosapent
ethyl has been approved by the FDA for ASCVD risk re-
duction in patients with diabetes mellitus and two or more
additional risk factors for cardiovascular disease, with fast-
ing triglyceride levels ≥ 150 mg/dL on maximally tolerated
statin therapy, or with established cardiovascular disease. 93 

The reason for discrepancy between the positive effect of
icosapent ethyl in REDUCE-IT trial 111 and no effect of a
mixed EPA and DHA carboxylic acids in the STRENGTH
trial 115 remains uncertain. These two high-quality clinical
trials used omega-3 PUFAs at similarly high doses but in
different formularies and comparisons between trials must
be done cautiously. These two studies were designed differ-
ently in at least three aspects. First, omega-3 PUFAs were
administered as an ethyl ester formula in the REDUCE-IT
trial but as unesterified fatty acids, which are rapidly ion-
ized to become molecules with detergent properties (soaps),
in the STRENGTH trial. Second, in contrast to corn oil used
in the STRENGTH trial, the mineral oil placebo used in the
REDUCE-IT trial might have affected the outcome. How-
ever, a FDA advisory committee concluded that the effects of
mineral oil likely had little effect on the end point. 121 Third,
the DHA component of omega-3 PUFAs could possibly be
ineffective or even detrimental though currently there are no
ASCVD outcome trials of DHA monotherapy. 

The significant therapeutic efficacy of EPA in combi-
nation with statin on ASCVD was not found in other
triglyceride-lowering agents, including fenofibrate and
niacin, which failed to reduce cardiovascular events as com-
pared to statin treatment alone. 122-125 With the withdrawal
of recommendation by FDA on the combination of statins
with fibrates or niacin in the prevention or treatment of AS-
CVD, icosapent ethyl remains a viable non-LDL target ther-
apy for the patients with increased ASCVD risk and hyper-
triglyceridemia. Pemafibrate to Reduce Cardiovascular Out-
comes by Reducing Triglycerides in Patients with Diabetes
(PROMINENT; NCT03071692), an ongoing trial of pemafi-
brate (a selective PPAR α modulator that significantly lowers
triglyceride) in patients with type 2 diabetes mellitus, mild-
to-moderate hypertriglyceridemia and low HDL-cholesterol,
might further shed light on the mechanism of triglyceride-
lowering agents on ASCVD. 126 

Conclusions and future challenges 

In summary, both hypertriglyceridemia and inflammation
play critical roles in the atherosclerosis formation. Though
extensive preclinical and clinical evidence has shown the ef-
fects of omega-3 PUFAs in ameliorating both processes, the
efficacy of omega-3 PUFAs on reducing atherosclerosis re-
mains a field of active investigation because primary end
points of ASCVD events were achieved in some but not all
of the large clinical trials. Of note, however, the recent meta-
analysis showed a benefit of omega-3 PUFAs in lowering
the risk of most ASCVD end points, and the current clinical
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guidelines from several national organizations overall sup-
port the recommendation that omega-3 PUFAs should be an
integral component of healthy supplementation and ASCVD
risk reduction. Any small efficacy from omega-3 PUFA sup-
plementation on disease prevention and treatment could be
transformed to large public health benefits. 

Omega-3 PUFA supplementation would have a greater
effect on the individuals with low intake of omega-3 PU-
FAs and on the people with a genotype associated with low
omega-3 PUFA blood levels and pro-inflammation status.
The next frontier in this field will aim to personalize nutrition
recommendations based not only on diet history and pheno-
type, but also on additional molecular factors, such as the
individual’s genotype. 
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