
Arteriosclerosis, Thrombosis, and Vascular Biology

Arterioscler Thromb Vasc Biol is available at www.ahajournals.org/journal/atvb

Arterioscler Thromb Vasc Biol. 2020;40:1135–1147. DOI: 10.1161/ATVBAHA.119.313286� May 2020    1135

BRIEF REVIEW

Emerging Mechanisms of Cardiovascular 
Protection for the Omega-3 Fatty Acid 
Eicosapentaenoic Acid
R. Preston Mason, Peter Libby, Deepak L. Bhatt

ABSTRACT: Patients with well-controlled LDL (low-density lipoprotein) levels still have residual cardiovascular risk associated 
with elevated triglycerides. Epidemiological studies have shown that elevated fasting triglyceride levels associate independently 
with incident cardiovascular events, and abundant recent human genetic data support the causality of TGRLs (triglyceride-
rich lipoproteins) in atherothrombosis. Omega-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic 
acid  (DHA), lower blood triglyceride concentrations but likely exert additional atheroprotective properties at higher doses. 
Omega-3 fatty acids modulate T-cell differentiation and give rise to various prostaglandins and specialized proresolving lipid 
mediators that promote resolution of tissue injury and inflammation. The REDUCE-IT (Reduction of Cardiovascular Events 
with Icosapent Ethyl–Intervention Trial) with an EPA-only formulation lowered a composite of cardiovascular events by 25% in 
patients with established cardiovascular disease or diabetes mellitus and other cardiovascular risk factors. This clinical benefit 
likely arises from multiple molecular mechanisms discussed in this review. Indeed, human plaques readily incorporate EPA, 
which may render them less likely to trigger clinical events. EPA and DHA differ in their effects on membrane structure, rates 
of lipid oxidation, inflammatory biomarkers, and endothelial function as well as tissue distributions. Trials that have evaluated 
DHA-containing high-dose omega-3 fatty acids have thus far not shown the benefits of EPA alone demonstrated in REDUCE-
IT. This review will consider the mechanistic evidence that helps to understand the potential mechanisms of benefit of EPA.

VISUAL OVERVIEW: An online visual overview is available for this article.
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HIGH-DOSE OMEGA-3 FATTY 
ACID TREATMENT AND RESIDUAL 
CARDIOVASCULAR RISK
Despite the success of LDL (low-density lipoprotein)-low-
ering therapies in reducing cardiovascular risk, individuals 
with well-controlled LDL still have residual cardiovascular 
risk associated in part with elevated triglycerides.1,2 The 
REDUCE-IT (Reduction of Cardiovascular Events with 
Icosapent Ethyl–Intervention Trial) that tested an omega-3 
fatty acid (n3-FA)-based therapy of eicosapentaenoic 
acid (EPA) demonstrated cardiovascular risk reduction in 
addition to the protection afforded by statins. REDUCE-
IT demonstrated that a highly purified ethyl ester of 
EPA, icosapent ethyl, significantly reduced the risk of 

cardiovascular death, myocardial infarction, stroke, hospi-
talization for unstable angina, or coronary revascularization 
in at-risk patients with triglycerides above ≈100 mg/dL 
despite being treated with statins.3–6 First ischemic events 
fell by 25% (P=0.00000001) and total (first and sub-
sequent) ischemic events by 31% (P=0.0000000004), 
with consistent benefits across multiple prespecified sub-
groups, including primary and secondary prevention. The 
prespecified subgroup of 3146 patients randomized in the 
United States demonstrated benefits at least as robust 
as the overall population, with a notable 30% lower rate 
of mortality (P=0.004) in those randomized to icosapent 
ethyl.7 The EPA treatment used yielded consistent ben-
efits across baseline levels of triglycerides as well, includ-
ing in the ≈10% of participants with normal triglycerides.8
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The large relative and absolute risk reductions in 
several different types of end points from REDUCE-IT 
seemed to exceed that expected by the degree of triglyc-
eride lowering, suggesting that other properties of EPA 
likely contribute to the benefits, as will be discussed9–11 
(Figure  1). Beyond the effect on lowering triglyceride 
levels, EPA has cell-membrane stabilizing properties that 
may explain, in part, the significant reductions seen in 
death from cardiovascular causes (20% reduction), sud-
den cardiac death (31% reduction), and cardiac arrest 
(48% reduction). Of note, the results of REDUCE-IT 
apply to a broad population of at-risk patients.12,13 The 
findings from REDUCE-IT contrast sharply with previous 
outcome trials that showed no cardiovascular benefit 
using EPA/docosahexaenoic acid (DHA) combinations 
or dietary supplements that may contain oxidized fatty 
acids and saturated fat.14–18 Further trials with high-dose 
n3-FAs in various groups will provide additional insight 
into this question.

The REDUCE-IT trial followed the JELIS trial (Japan 
EPA Lipid Intervention Study), which demonstrated that 
purified EPA (1.8 g/d) reduced the risk of major coronary 

events in hypercholesterolemic patients receiving statin 
therapy versus those subjected to statin monotherapy. 
JELIS did not prespecify a minimum triglyceride level for 
inclusion into the study.19 This open-label, randomized 
trial, showed a 19% reduction (P=0.011) in cardiovas-
cular events overall in the trial in the EPA group, with 
consistent benefits in both secondary and primary pre-
vention. Notably, the median triglyceride level at base-
line was only slightly above 150 mg/dL, meaning that 
approximately half of the patients had normal triglycer-
ides. However, in post hoc analyses, among those sub-
jects with higher triglyceride levels (>150 mg/dL) and 
low HDL-C (high-density lipoprotein-cholesterol) levels 
(<40 mg/dL), there was 53% reduction in events with 
EPA treatment.20

OMEGA-3 FATTY ACIDS AND 
PROGRESSION OF ATHEROSCLEROSIS 
IN PATIENTS WITH ELEVATED 
TRIGLYCERIDES
n3-FAs and their bioactive lipid metabolites produce 
complex and multifactorial biological effects that remain 
incompletely understood, especially at higher doses, that 
may reduce the risk of cardiovascular events. A meta-
analysis of observational and randomized trials indicated 
that circulating levels of n3-FAs associated inversely with 
modestly lower rates of cardiovascular death.21,22 Other 

Nonstandard Abbreviations and Acronyms

ApoC-III		  apolipoprotein C-III
COX		  cyclooxygenase
DHA		  docosahexaenoic acid
EC		  endothelial cell
eNOS		�  endothelial isoform of nitric oxide 

synthase
EPA		  eicosapentaenoic acid
GPR-120		  G-protein-coupled receptor 120
HDL-C		  high-density lipoprotein-cholesterol
hsCRP		  high-sensitivity C-reactive protein
IL		  interleukin
JELIS		  Japan EPA Lipid Intervention Study
n3-FAs		  omega-3 fatty acids
n6-FAs		  omega-6 fatty acids
NF-κB		  nuclear factor-κB
NLRP-3		�  NLR family pyrin domain-containing 3
NO		  nitric oxide
oxLDL		  oxidized LDL-C
REDUCE-IT	� Reduction of Cardiovascular Events 

with Icosapent Ethyl–Intervention 
Trial

RLP-C		  remnant-like particle cholesterol
ROS		  reactive oxygen species
TGRL		  triglyceride-rich lipoproteins
TH		  T helper
VCAM-1		  vascular cell adhesion molecule 1
VLDL		  very-low-density lipoprotein

Highlights

•	 Omega-3 fatty acids, such as eicosapentaenoic 
acid (EPA) and docosahexaenoic acid  (DHA), 
have multiple biological effects. In the REDUCE-IT 
(Reduction of Cardiovascular Events With Icosapent 
Ethyl–Intervention Trial), a prescription EPA-only 
formulation called icosapent ethyl reduced cardio-
vascular events by 25% in high-risk patients with 
either established cardiovascular disease or diabe-
tes mellitus plus other risk factors.

•	 Cardiovascular outcomes trials that have evaluated 
mixed (DHA-containing) omega-3 fatty acids on 
top of contemporary medical therapy have thus far 
not shown the benefits of icosapent ethyl as seen 
in REDUCE-IT and the JELIS (Japan EPA Lipid 
Intervention Study), highlighting the importance of 
understanding molecular mechanisms of action of 
specific omega-3 fatty acids.

•	 EPA and DHA differ markedly, with distinct effects 
on membrane structure, rates of lipid oxidation, 
inflammatory biomarkers, and endothelial function, 
as well as tissue distributions.

•	 Ongoing scientific efforts to understand the mecha-
nism of action for EPA will help usher in a new era 
of cardiovascular therapeutics.
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studies indicated that the cardiovascular benefits of 
n3-FAs could link to either EPA or DHA but highlighted 
the need for more definitive evidence.23 A study of 218 
subjects with coronary disease randomized to high-dose 
EPA and DHA (3.36 g/d) or placebo showed that those 
with n3-FAs that reached plasma phospholipid levels of 
at least 4% had a significantly slower progression of cor-
onary plaque as monitored by coronary computed tomo-
graphic angiography.24

Clinical studies with high-dose EPA (2–4 g/d) provide 
some mechanistic insights based on changes in various bio-
markers in statin-treated patients with elevated triglycerides 
that may contribute to the reduction in residual cardiovas-
cular risk due to EPA demonstrated in REDUCE-IT.2,5,6 In 
people with elevated or very high triglycerides, treatment 
with a highly purified and quality-controlled preparation of 
EPA (2–4 g/d) reduced the arachidonic acid-to-EPA ratio 
in blood, hsCRP (high-sensitivity C-reactive protein), RLP-C 
(remnant-like particle cholesterol), ApoC-III (apolipoprotein 
C-III), and oxLDL (oxidized LDL-C) concentrations com-
pared with placebo controls.5,25–32 EPA generally produced 
these effects in a dose-dependent manner. Further studies 
of inflammatory and other biomarkers from REDUCE-IT 

and other trials should lead to additional insights into mech-
anisms of action of highly purified EPA in individuals with 
elevated triglycerides and cardiovascular risk.

Laboratory and clinical studies suggest that EPA also 
influences vascular functions related to atherosclerosis 
such as improved endothelial-dependent vasodilata-
tion, membrane stabilization, reduced inflammation, and 
limiting features of plaques associated with propensity 
to provoke thrombosis.33–40 In a study of patients who 
underwent carotid endarterectomy, those treated with 
n3-FAs enriched with EPA (0.81 g/day of EPA and 0.675 
g/day of DHA) had fewer foam cells, features of plaque 
instability, markers of inflammation, and T-cell content.38 
HDL isolated from EPA-only treated individuals exhib-
ited enhanced cholesterol efflux from monocytes and 
augmented antioxidant and anti-inflammatory actions.41 
In cultured human endothelial cells (ECs), EPA-enriched 
HDL increased levels of specialized proresolving lipid 
mediators while reducing cytokine-stimulated VCAM-1 
(vascular cell adhesion molecule 1) expression.42 EPA 
partitions into the outer monolayer of the HDL particle 
and exhibits greater antioxidant function than DHA-
loaded HDL.43

Figure 1. Potential mechanisms of cardioprotection for omega-3 fatty acids.
Omega-3 fatty acids may lessen risk of cardiovascular events through a number of mechanisms that contribute to their overall protective 
actions. Lowering of TGRL (triglyceride-rich lipoprotein) may account for some but certainly not all of the observed benefits (Figure 2). By 
boosting the production of anti-aggregatory and vasodilatory prostanoids, such as prostacyclin, omega-3 fatty acids may combat thrombosis 
as well as vasospasm. Omega-3 fatty acids can incorporate into plasma membranes and those of the mitochondria potentially stabilizing them 
to resist oxidation and confer protection against arrhythmias. Omega-3 fatty acids and certain prostanoids produced from them can exert 
anti-inflammatory actions. In addition, the omega-3 fatty acids can provide precursors for the synthesis of specialized proresolving mediators 
that can combat inflammation, perhaps causing less interference with his defenses than direct anti-inflammatory therapies. A combination of 
these various mechanisms may contribute to the cardiovascular protection associated with omega-3 fatty acid consumption. DHA indicates 
docosahexaenoic acid; and EPA, eicosapentaenoic acid.
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In patients with coronary heart disease, a combination 
EPA with statin therapy significantly reduced coronary 
plaque volume compared with statin therapy alone in the 
CHERRY trial  (Combination Therapy of Eicosapentae-
noic Acid and Pitavastatin for Coronary Plaque Regres-
sion Evaluated by Integrated Backscatter Intravascular 
Ultrasonography).33 In 193 patients who were to undergo 
percutaneous coronary intervention underwent random 
allocation to the statin pitavastatin (4 mg/d, n=96) or to 
a pitavastatin/EPA group (pitavastatin 4 mg/d and EPA 
1.8 g/d, n=97), for 6 to 8 months. Integrated backscatter 
intravascular ultrasound assessed coronary plaque vol-
ume and character in nonstented lesions. Total atheroma 
volume fell significantly in the pitavastatin/EPA but not 
the pitavastatin alone group. An imaging study in a North 
American population is currently underway with highly 
purified EPA (4 g/d) to evaluate changes in atheroscle-
rotic plaque characteristics in statin-treated patients with 
coronary atherosclerosis, triglyceride levels of 135 to 
499 mg/dL, and LDL levels of 40 to 115 mg/dL.44 This 
study (EVAPORATE  [Effect of Vascepa on Improving 
Coronary Atherosclerosis in People With High Triglycer-
ides Taking Statin Therapy]) is measuring low attenuation 

plaque volume by multidetector computed tomography 
angiography in 80 enrolled patients at a final analysis at 
18 months. A prespecified interim analysis at 9 months 
was presented at the 2019 AHA Scientific Sessions 
(Philadelphia, PA) and showed a significant difference in 
a secondary end point of total plaque volume progres-
sion with EPA versus placebo.

EPA can reduce triglyceride concentrations without 
raising LDL-C levels at 2-4 g/d, compared with for-
mulations that contain another n3-FA, DHA, at similar 
doses, in patients with very high triglycerides (>500 mg/
dL).25,27,45 The mechanism for this unexpected finding 
with EPA treatment may relate to reduced production 
and faster clearance of TGRL (triglyceride-rich lipopro-
teins; estimated by serum triglyceride measurements) 
in concert with more rapid clearance of LDL particles 
and slower production of VLDL (very-low-density lipo-
protein) particles.19,27,46 At lower triglyceride levels, mixed 
n3-FA formulations also do not raise LDL. Through 
various mechanisms, TGRLs can promote vascular dys-
function and atherosclerosis (Figure 2). Saturated fatty 
acids, such as palmitate, may promote inflammation 
through NLRP-3 (NLR family pyrin domain-containing 

Figure 2. Atherogenic pathways for TGRLs (triglyceride-rich lipoproteins).
TGRL (estimated by serum triglyceride measurements) can promote vascular dysfunction and atherosclerosis through a number of 
mechanisms. Saturated fatty acids, notably palmitate, can promote inflammation, in part, due to activation of the NLRP-3 (NLR family pyrin 
domain-containing 3) inflammasome, which produces activated forms of the proinflammatory cytokines IL (interleukin)-1β and IL-18.47 ApoC-
III (Apolipoprotein CIII) can exert direct proinflammatory effects of cells involved in atherosclerosis, such as macrophages and endothelial 
cells. Human genetic studies strongly support the causality of ApoC-III in human atherothrombosis. TGRL particles deliver cholesterol 
effectively to macrophages and can promote foam cell formation. Omega-3 fatty acids may exert some of their apparent protective effect on 
atherothrombosis by blocking some of these proinflammatory and other deleterious effects of TGRL. EGR-1 indicates early growth response 
protein 1; LDL, low-density lipoprotein; MAPK, mitogen-activated protein kinase; MCP-1, monocyte chemoattractant protein-1; NF-κB, nuclear 
factor-κB; PKC, protein kinase C; TLR, toll-like receptors; and VCAM-1, vascular cell adhesion molecule 1.



Brief Review
 - AL

Mason et al� Omega-3 Fatty Acids in Cardiovascular Protection

Arterioscler Thromb Vasc Biol. 2020;40:1135–1147. DOI: 10.1161/ATVBAHA.119.313286� May 2020    1139

3) inflammasome activation, leading to activated forms 
of the proinflammatory cytokines IL (interleukin)-1β and 
IL-18.47 Clinical trials that have tested other triglycer-
ide-lowering agents (eg, fenofibrate or niacin) have not 
shown significant cardiovascular benefits when added 
to statins compared with statin therapy alone.48–52 These 
trials did not prospectively enroll patients with elevated 
triglyceride levels, an important limitation.

Beyond their effects on levels of LDL, EPA-, and DHA-
containing formulations appear to differ with respect to 
hsCRP reduction. Prescription EPA reduces hsCRP in 
patients with elevated or high triglycerides, an effect 
enhanced by combination with more potent statins.26 
In contrast, mixed EPA and DHA treatment at a similar 
dosage (4 g/d) did not reduce hsCRP concentrations in 
statin-treated patients.53 The EPA and DHA combination 
did reduce apoC-III levels as previously observed with 
purified EPA.26,31,32 A decrease in apoC-III would lower 
triglyceride levels through several mechanisms, includ-
ing reduced inhibition of lipoprotein lipase. EPA admin-
istration also inhibits platelet activation and aggregation, 
which, along with reducing mean platelet count, may con-
tribute to antithrombotic effects.54–57 (Figure  1) Finally, 
both EPA and DHA have effects on hemodynamics, adi-
ponectin, and IL-18 levels as well as platelet function in 
various clinical and experimental studies.9,58–65 Inconsis-
tent effects of EPA and DHA in such studies may result 
from differences in the experimental conditions, dosage, 
and patient characteristics.

EPA AND DHA GIVE RISE TO BIOACTIVE 
LIPIDS THAT MODULATE INFLAMMATION
Atherosclerosis involves inflammatory mechanisms of 
both the adaptive and innate immune responses.66,67 The 
n3-FAs give rise to signaling molecules that can reduce 
inflammation in different tissues and vascular beds. EPA 
and DHA form the cardioprotective and antithrombotic 
metabolites thromboxane A3/prostacyclin. In contrast, 
n6-FAs form thromboxane A2, a platelet activator that 
contributes to atherothrombosis.68 The n3-FAs compete 
with the n6-FA for the COX (cyclooxygenase) enzymes 
that synthesize the thromboxanes and thus limit the pro-
duction of these potent proaggregatory and vasocon-
strictor mediators.28,69 Despite this link between n6-FAs 
and proinflammatory signaling molecules, a recent pooled 
analysis of 30 cohort studies showed higher circulating 
and tissue levels of linoleic acid associate with lower risk 
of major cardiovascular events.70 Compared with other 
FAs, such as saturated FAs, linoleic acid has favorable 
effects on lipid metabolism.71 Another meta-analysis 
showed the lower cardiovascular risk was observed with 
n3-FAs and arachidonic acid but not other n6-FAs.22

Of the various eicosanoids produced by COXes, pros-
tacyclin has particular interest with respect to vascular 

protection. Produced by healthy ECs, prostacyclin func-
tions through a paracrine signaling pathway mediated 
by G protein-coupled receptors on nearby platelets and 
ECs. Receptor binding leads to inhibition of abnormal 
platelet activation while counteracting the prothrom-
botic effects of thromboxane. Prostacyclin also promotes 
smooth muscle relaxation and endothelial-dependent 
vasodilation.

Additional bioactive lipids that derive from n3-FAs 
originate from macrophages and neutrophils include the 
leukotrienes and resolvins.72 The metabolism of n3-FAs 
produces resolvins, maresins, and protectins. These 
metabolites, known as specialized proresolving lipid 
mediators, promote the resolution of inflammation as part 
of a highly coordinated process that helps to reestablish 
homeostasis after tissue injury or infection.73 Following 
acute inflammation, these steps include a reduction in 
the production of cytokines and extracellular-reactive 
oxygen species (ROS), along with inhibition of granu-
locyte trafficking. These bioactive lipids also modulate 
the inflammatory response by influencing macrophage-
mediated clearance of cellular debris.74

Emerging lines of evidence indicate that these metab-
olites of n3-FAs may also limit chronic inflammation and 
activation of cells of the adaptive immune system in a 
coordinated fashion. By modulating membrane lipid 
dynamics, n3-FAs influence the organization of microdo-
mains or lipid rafts enriched in cholesterol and sphingolip-
ids. These highly ordered lipid assemblies, in turn, control 
the clustering of proteins required for cell signaling dur-
ing CD4+ T-lymphocyte activation and differentiation.75 
The ability of n3-FAs to reduce inflammation may arise, 
in part, from favorable changes in the Th1/Th2 balance 
through polarization of CD4+ T cells toward a Th2 slant 
as evidenced in vitro.76 Thus, n3-FAs can regulate T-cell 
function and regulation, such as the T helper (TH)1/
TH2 balance, as well as levels of TH1 and TH17.76–78 
In general, TH1 or TH17 polarized responses promote 
inflammation while TH2 and regulatory T cell predomi-
nant responses promote repair and resolution. Such find-
ings have important implications for atherosclerosis. In 
human peripheral blood lymphocytes, resolvins reduced 
cytokine production by activated CD8+ T cells and CD4+ 
TH1 while limiting CD4+ T-cell differentiation into TH1 
and TH17 cells.79 Mice with genetically impaired ability 
to synthesize n3-FAs have increased TH1/TH17 cells 
and decreased regulatory T cells compared with wild-
type mice.79

The n3-FAs and their metabolites associate differ-
entially with experimental atherosclerotic plaques. In 
atherosclerosis-prone mice (lacking apolipoprotein E, 
Apoe−/−) fed a Western diet supplemented with EPA (1%, 
w/w) or DHA (1%, w/w) for 3 weeks, EPA treatment 
reduced plaque volume as compared to DHA.80 EPA and 
its metabolites, especially 12-hydroxy-EPA, associated 
preferentially with thin-cap plaques and accumulation of 
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anti-inflammatory M2 macrophages while DHA associ-
ated with plaques of various sizes. In the aortic root, total 
EPA and 12-HETE levels followed a concentration gradi-
ent from the vascular endothelium to the media. In addi-
tion, n3-FAs can ligate the GPR-120 (G-protein-coupled 
receptor 120) found on macrophages. Binding these 
receptors by n3-FAs inhibits the activation of NF-κB 
(nuclear factor-κB), a key regulator of inflammatory gene 
transcription.81,82

COMPARATIVE BIOPHYSICAL AND 
ANTIOXIDANT PROPERTIES OF OMEGA-3 
FATTY ACIDS
EPA and DHA have direct and indirect cellular actions 
that differ depending on their particular hydrocarbon 
length and number of double bonds.10 In particular, DHA 
has an additional double bond (6 total) and 2 more 
carbons compared with EPA. These structural prop-
erties influence the interactions of these 2 fatty acids 
with surrounding membrane lipids that, in turn, can alter 
membrane lipid raft formation and signal transduc-
tion pathways (Figure 3).36,83–86 Based on its hydrocar-
bon length and number of double bonds, EPA inserts 
into lipoprotein particles and cellular membranes in an 
extended conformation where it can scavenge ROS 
through stabilization of the unpaired electrons by its mul-
tiple conjugated double bonds, a property known as con-
jugative resonance stabilization.36 Patients with elevated 
triglycerides treated with prescription EPA (2–4 g/d) 
have significantly reduced oxLDL levels in plasma com-
pared with placebo.26

Oxidative modification of LDL can favor endothelial 
dysfunction, vascular inflammation, and other aspects 
of atherogenesis.87–89 Oxidatively modified LDL, but not 
native LDL, can foster foam cell formation. Circulating 
levels of oxLDL and other lipid oxidation products cor-
relate with the severity of acute coronary syndromes 
and an increased risk for myocardial infarction, vascu-
lar procedures, and metabolic syndrome.90–93 In labora-
tory experiments, EPA had potent antioxidant effects 
in various apolipoprotein B-containing lipoprotein par-
ticles (LDL, VLDL, and small dense LDL) and in model 
membranes, properties not shared by other agents that 
lower triglycerides under identical experimental condi-
tions.83,94,95 These observations argue that EPA has a 
preferred and energetically favorable location in plasma 
membranes that facilitates ROS scavenging and stabi-
lizes the membrane structure. EPA may also intercalate 
into other cellular membranes, such as those of the mito-
chondria, where it could produce similar effects on mem-
brane structure under conditions of oxidative stress. The 
antioxidant capacity of DHA wanes more rapidly than 
that of EPA due to its longer carbon chain length and an 
additional double bond that leads to rapid isomerization 

and overall increased membrane fluidity rather than 
stability.36,83,94 In particular, while EPA had more of an 
extended orientation and conformation within the cell 
membranes, DHA interacted with the phospholipid head 
group region with concomitant disorder in the membrane 
hydrocarbon core.36,83 These differences in membrane 
dynamics and conformation agree with the greater sus-
ceptibility to isomerization observed for DHA by various 
laboratories.83–85,94,96 The antioxidant effects of EPA in 
cell membranes in vitro also pertain under conditions of 
hyperglycemia, a condition of increased generation of 
ROS and carbonyl species.95 The presence of an active 
metabolite of atorvastatin that has antioxidant properties 
in vitro enhanced the antioxidant actions of EPA.94 The 
atorvastatin metabolite and EPA have complementary 
locations in the membrane hydrocarbon core that facili-
tate free radical stabilizing properties in an additive or 
even synergistic fashion not observed with DHA.94

OMEGA-3 FATTY ACIDS AND STATINS 
ALTER ENDOTHELIAL FUNCTIONS
EC vasomotor dysfunction generally involves reduced 
nitric oxide (NO) bioavailability, and associates with vaso-
constriction and early plaque development.97–99 Arterial 
stiffness correlates with cardiovascular disease and 
all-cause mortality independent of traditional risk fac-
tors.100 EPA produces favorable effects on arterial stiff-
ness in patients with cardiovascular disease or its risk 
factors, including those with diabetes mellitus or receiv-
ing statins.101–104 The ability of EPA to reduce arterial 
stiffness did not depend on changes in blood pressure 
or LDL levels but correlated with reduced biomark-
ers of inflammation and oxidative stress. EPA may also 
enhance EC vasodilator function when combined with a 
statin as will be discussed. Mice deficient in the eNOS 
(endothelial isoform of nitric oxide synthase) show insu-
lin resistance and reduced NO bioavailability.105 Such 
animals display vascular abnormalities associated with 
insulin resistance, along with hyperinsulinemia. Previ-
ous studies have demonstrated that DHA can suppress 
the expression of cytokine-induced proatherogenic and 
proinflammatory proteins in human ECs.106,107 Similar 
benefits were observed with EPA as it inhibited lipopoly-
saccharide-induced monocyte adhesion and expression 
of adhesion molecules both in vitro and in vivo.108

Recent studies investigated the combined effects of 
n3-FAs and statins on human ECs in culture. The com-
bination of EPA and atorvastatin reduced endothelial 
dysfunction triggered by either oxLDL or high glucose 
in a manner not seen with DHA or statin treatment.35 
This improvement in endothelial vasodilator function 
accompanied pronounced increases in the EC ratio of 
stimulated NO to peroxynitrite (ONOO−, a highly oxidant 
species) release; the effects did not depend on changes 
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Figure 3. Molecular membrane interactions of omega-3 fatty acids.
Schematic illustration of the proposed location and contrasting effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on 
membrane structure. The insertion of EPA and DHA affect distinct regions of the membrane lipid bilayer due to differences in their hydrocarbon 
length and number of double bonds. The longer hydrocarbon length of DHA leads to more rapid isomerization and conformational changes that 
result in increased membrane fluidity and promotion of cholesterol domains. EPA has a more stable and extended structure that contributes to 
membrane stability as well as inhibition of lipid oxidation and cholesterol domain formation.
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in eNOS protein expression, suggesting an improvement 
in eNOS activity. The favorable antioxidant interactions 
between EPA and atorvastatin may relate to common 
mechanisms.95 The effects of EPA and a statin on EC 
function also pertained to rodent studies.35 While either 
EPA or atorvastatin showed separate benefits, their com-
bination augmented NO bioavailability under conditions 
of high glucose concentrations alone or in combination 
with exposure to oxLDL.35

EFFECTS OF OMEGA-3 FATTY ACIDS 
ON MEMBRANE FLUIDITY, INCLUDING 
CHOLESTEROL DOMAIN AND CRYSTAL 
FORMATION
Excessive cholesterol accumulation in the membranes of 
vascular smooth muscle cells and macrophages can pro-
mote the formation of distinct lipid domains within the cell 
membrane consisting of bilayers of cholesterol monohy-
drate.109,110 Such cholesterol domains may facilitate the 
formation of extracellular cholesterol crystals, a hall-
mark of atherosclerotic plaques.111 Oxidative stress and 
high glucose can also stimulate cholesterol membrane 
domains independently of lipid changes.112 Such effects 
depended on glucose concentration and did not apply to 
iso-osmotic concentrations of another monosaccharide 

(mannose), likely due to glucose’s ability to promote 
ROS generation. Cholesterol crystals costimulate inflam-
masomes, intracellular macromolecular assemblies that 
contain and regulate caspase-1, the enzyme that pro-
cesses pro-IL-1β and pro-IL-18 into their active proin-
flammatory cytokine products.113

In in vitro studies using model membranes, EPA 
inhibited glucose-induced cholesterol crystalline domain 
formation at pharmacologically relevant concentrations 
due to its antioxidant activity.95,114 Neither certain other 
agents that lower triglycerides nor vitamin E reproduced 
this action, as they did not inhibit cholesterol domain 
formation or interfere with oxidative modification of the 
membrane lipids.95 These findings suggest that EPA has 
a  particular hydrocarbon length and number of double 
bonds that foster preferential intercalation into the alkyl 
chain core of the membrane bilayer, where it inhibits 
cholesterol domain formation. By contrast, the longer 
hydrocarbon length for DHA promotes rapid isomeri-
zation or conformational changes in the membrane,115 
while EPA preserves a more ordered membrane struc-
ture.36 These conformational differences cause DHA to 
change the normal distribution of cholesterol and even 
promote membrane cholesterol domains as compared to 
EPA.83,116,117 Although these properties might prove dele-
terious in vascular cells, such changes in the organization 
of cholesterol and other membrane lipids may contribute 

Figure 4. Clinical advances in the management of residual cardiovascular risk.
Beyond a plant-based diet and high-intensity statins, further potential strategies to reduce residual cardiovascular risk include those targeting 
LDL (low-density lipoprotein)-cholesterol, inflammation, thrombosis, triglycerides (TGs), and Lp(a). hsCRP indicates high-sensitivity C-reactive 
protein; and REDUCE-IT, Reduction of Cardiovascular Events with Icosapent Ethyl–Intervention Trial.
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essentially to maintaining normal membrane structure 
and lipid raft organization in nervous tissues and in the 
retina where DHA is the most common polyunsaturated 
FA in cellular membranes.118,119

Thus, EPA-based therapeutics appear to offer a major 
advance in cardiovascular risk reduction that adds to 
the protection afforded by statins. REDUCE-IT demon-
strated that high doses of a highly purified ethyl ester of 
EPA, icosapent ethyl, provided large relative and absolute 
risk reductions in cardiovascular death, myocardial infarc-
tion, stroke, hospitalization for unstable angina, and coro-
nary revascularization in at-risk patients with triglycerides 
above ≈100 mg/dL despite therapy with statins.2,3,5,6,120 
Several other medications are in early stages of evalu-
ation, with promising effects on biomarkers such as tri-
glycerides (Figure  4). These compounds may provide 
similar, lesser, or even greater risk reductions in cardio-
vascular events than seen in REDUCE-IT, though large, 
long-term cardiovascular outcome trials will be neces-
sary to establish any clinical benefits. In addition, other 
trials have focused on inflammation. In patients with 
previous myocardial infarction, CANTOS  (Canakinumab 
Anti-Inflammatory Thrombosis Outcome Study) found a 
15% reduction in MACE (major adverse cardiovascular 
events) with a targeted anti-inflammatory approach using 
canakinumab, validating the pivotal role of inflammation 
in provoking ischemic events.121 COLCOT  (Colchicine 
Cardiovascular Outcomes Trial), using colchicine, con-
firmed that an anti-inflammatory approach can provide 
incremental cardiovascular benefit, demonstrating in 
patients with recent myocardial infarction that there was 
a 23% reduction in MACE, largely driven by a reduction 
in coronary revascularization.122 Anti-inflammatory mech-
anisms of EPA may also contribute to some proportion 
of cardiovascular benefit in REDUCE-IT, albeit further 
downstream in the inflammatory process, as evidenced 
by large reductions in multiple types of end points with-
out increased infection rates.

Another trial that tested a mixture of EPA and DHA 
at 4 g/d, called STRENGTH (A Long-Term Outcomes 
Study to Assess Statin Residual Risk Reduction With 
Epanova in High Cardiovascular Risk Patients With 
Hypertriglyceridemia; URL: https://www.clinicaltrials.
gov. Unique identifier: NCT02104817), was terminated 
due to futility at the recommendation of the indepen-
dent data-monitoring committee. Thus, currently, the only 
n3-FA proven to be of cardiovascular benefit in outcome 
trials remains EPA. The failure to show significant ben-
efit in STRENGTH indicates that the addition of DHA 
may diminish or even negate certain benefits of EPA, 
or that the benefits shown in REDUCE-IT accrue from 
the higher dosage of EPA or the specific formulation. 
As already discussed, DHA or certain other agents that 
lower triglyceride tested under identical conditions lack 
certain atheroprotective mechanisms exerted by EPA, 
including effects on membrane lipid order and cholesterol 

crystalline domain formation, along with other important 
differences. Other potential differences among n3-FAs 
with respect to mechanisms of atherosclerosis thus merit 
further study. Several other trials of potent therapies that 
lower triglycerides are being planned,123 and one with 
the selective PPAR-α (peroxisome proliferator-activated 
receptor-alpha) modifying agent pemafibrate is already 
underway (PROMINENT  [Pemafibrate to Reduce Car-
diovascular Outcomes by Reducing Triglycerides in 
Patients With Diabetes]; URL: https://www.clinicaltrials.
gov. Unique identifier: NCT03071692).124–126 These tri-
als should help to understand the effects of triglyceride 
lowering on cardiovascular outcomes. In the meantime, 
the scientific underpinnings behind the mechanisms of 
action of n3-FAs such as EPA continue to grow and help 
inform our understanding of this novel axis of cardiovas-
cular risk reduction.
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