Revolutionary Approaches to Improving Outcomes in Unresected LA SCCHN

Welcome and Introductions

Chair

Ezra Cohen, MD, FRCPSC, FASCO

Chief Medical Officer, Oncology Tempus Labs Professor of Medicine, Division of Hematology/Oncology University of California San Diego Health San Diego, CA, US

Faculty

Kevin Harrington, PhD, FRCP, FRCR, FRSB

Professor in Biological Cancer Therapies The Institute of Cancer Research London UK

Deborah J. Wong, MD, PhD

Associate Clinical Professor of Medicine David Geffen School of Medicine University of California, Los Angeles Los Angeles, CA, US

Disclosures

Ezra Cohen, MD, FRCPSC, FASCO

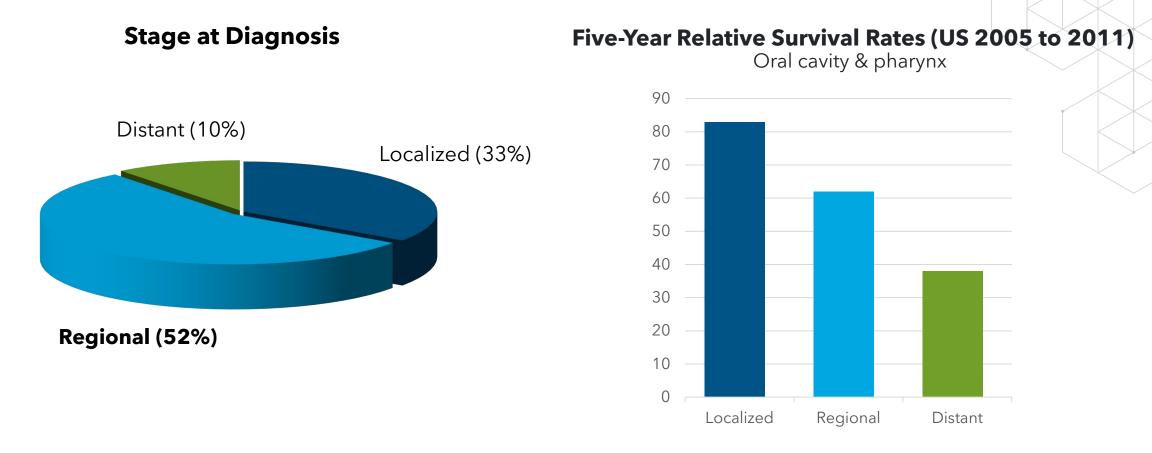
Consulting Fees: Adagene, Astellas, Cidara, Eisai, Genmab, Gilboa, iTeos, Lilly, MSD, Merck, Nectin Tx, Novartis, Nykode, Pangea Therapeutics, PCI Biotech, Replimune, Roche, Soteria, Tempus, Viracta Employee of an ineligible company: Tempus Labs Ownership Interest: Kinnate Biopharma, Primmune Therapeutics Research: NCI

Kevin J Harrington, PhD, FRCP, FRCR, FRSB

Consulting Fees: AstraZeneca, Boehringer Ingelheim, Merck, MSD, Replimune Research: AstraZeneca, Boehringer Ingelheim, Replimune

Deborah J. Wong, MD, PhD

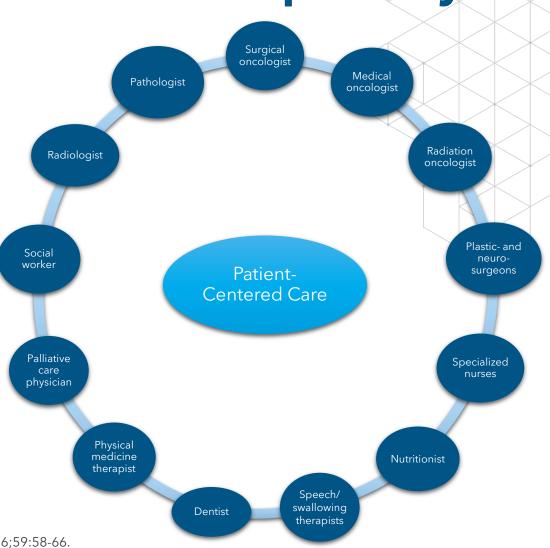
Consulting Fees: MSD Research: AstraZeneca, BICARA Therapeutics, Bristol-Myers Squibb Company, FSTAR Therapeutics, Genentech, Gilead, KURA Oncology, Lilly, MSD, Pfizer, Regeneron, TopAlliance



LASCCHN Overview

Ezra E.W. Cohen, MD

Locally Advanced Head and Neck Cancer



Adapted from Siegel RL, et al. CA Cancer J Clin. 2016;66(1):7-30. Chow LQM. N Engl J Med. 2020; 382:60-72.

prova

LA SCCHN Requires a Multidisciplinary Treatment Approach

- Treatment of LA SCCHN is challenging because of the involvement of critical organs important for swallowing, speaking and breathing
- Patient evaluation by a multidisciplinary team (MDT) is essential for appropriate treatment decisionmaking
 - Treatment differs according to stage of disease, anatomical size and surgical resectability
 - Patient performance status, age, comorbidities, preference also impact choice of treatment
- Patients treated in high volume centers with expertise in multidisciplinary care have better outcomes

LA SCCHN Non-Surgical Standard of Care

- Concurrent chemoradiotherapy (CRT) is superior to radiation alone with respect to loco-regional control and overall survival^{1,2,3}
- Definitive concurrent CRT with high-dose (HD) cisplatin (100 mg/m² Q3W) to a dose of 70Gy over 6-7weeks is the preferred regimen^{1,2}
- RTOG 91-11, laryngeal preservation randomized trial: the 2-year loco-regional control significantly was better with concurrent CRT (78%) vs induction chemo (IC)-RT (61%) vs RT alone (56%)³

Supportive Care is of Paramount Importance Along the Whole Disease Trajectory of LA SCCHN

Main issues in supportive care during CRT

- Nutritional assessment before and during CRT
- Nutritional enteral/parenteral support
- Prevention of swallowing problems related to RT
- Treatment of RT-induced pain
- Prevention and treatment of mucositis
- Prevention of major infections during chemotherapy and/or RT
- Psychological distress during treatment

Important role of MDT!

Bonomo P, et al. Front Oncol. 2019;9:926.

Current Landscape in LA SCCHN

Deborah J. Wong, MD, PhD

Outcomes for LA SCCHN

- Approximately two-thirds of patients with SCCHN present with locally advanced disease (stage III- IVB).
- Median Overall Survival is 20 months¹
- Survival rate is poorer for HPV-negative vs. HPV-positive SCCHN:
 - HPV-negative: 5-year survival rate <25% for HPV-negative Stage IVA and IVB;² 8-year rate 30.2% for p16-negative Stage III, IV³
 - 5-year survival rate ~ 50% for HPV-positive
 Stage III;^{4,5} 8-year survival rate 70.9% for p16+³

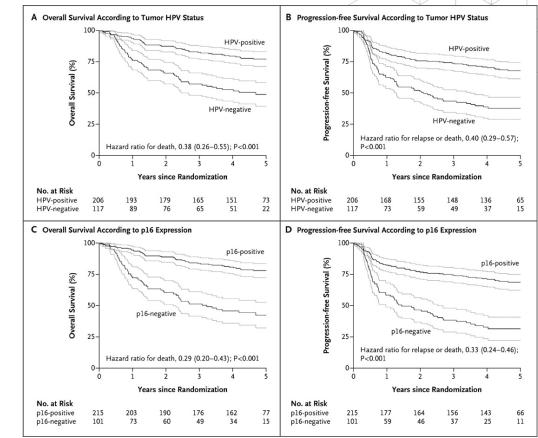
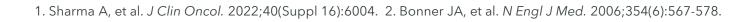


Fig. 1 from Reference 6, Ang et al.

 1. Adelstein DJ, et al. J Clin Oncol. 2003;21(1):92-98.
 2. Denis F, et al. J Clin Oncol. 2004;22(1):69-76.

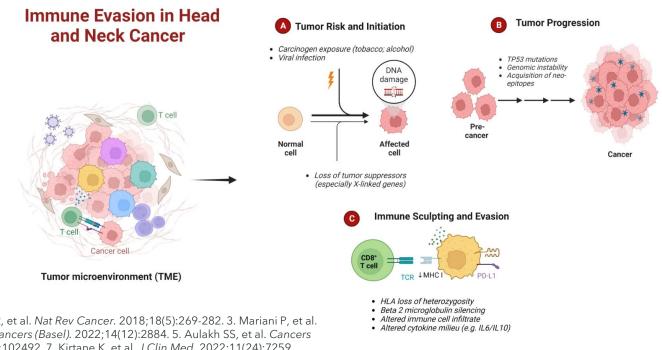
 3. Nguyen-Tan PF, et al. J Clin Oncol. 2014;32(34):3858-3867.
 4. Vokes EE, et al. J Natl Cancer Inst. 2015;107(12):djv344.

 5. O'Sullivan B, et al. Lancet Oncol. 2016;17(4):440-451.
 6. Ang KK, et al. N Engl J Med. 2010;363(1):24-35.


Definitive Treatment Options for LA SCCHN

- Multi-modal treatment
- Surgery followed by adjuvant radiation +/- chemotherapy
- Definitive chemoradiotherapy
- Induction chemotherapy \rightarrow chemoradiotherapy
- Neoadjuvant chemotherapy → surgery → radiation +/chemotherapy

Non-Surgical Management of LA SCCHN


- Chemoradiotherapy
 - Cisplatin 100 mg/m² IV every 3 weeks on days 1, 22, 43
 - Cisplatin 40 mg/m² IV weekly
 - Definitive CRT: weekly cisplatin 40 mg/m² non-inferior to bolus cisplatin¹
- Other chemotherapy: 5FU/platinum, Carboplatin/paclitaxel, 5FU/hydroxyurea
- Cetuximab: anti-EGFR²
 - Improved 3-year OS 10% vs RT alone, 32% increased locoregional control, decreased the risk of death by 26%, No difference in 1-year and 2-year rates of distant metastasis
- 50% of patients with LA-SCCHN will develop recurrent/metastatic disease with multimodal therapy

Negative Prognostic Factors for SCCHN

- Clinical Factors: HPV status, age, smoking, surgical margin status, tumor depth, extranodal disease
- High tumor mutational burden¹
- Genetic mutations: TP53 (84%), CDKN2A(59%), FAT1, PIK3CA, NOTCH1, KMT2D, HRAS²
- Recurrent alterations at oncogenes and tumor suppressor genes: CCNL1, EGFR, MYC, CCND1, and TP53
- Overexpression of oncogenes,
- Loss of heterozygosity
- Immune signatures:
 - Increased neutrophil : lymphocyte ratio³
 - Increased pro-inflammatory cytokines (IL-6) in the tumor microenvironment⁴
- Presence of detectable ctDNA⁵
- Inhibition of apoptosis⁶

1. Alexandrov LB, et al. *Nature*. 2013;500(7463):415-421. 2. Leemans CR, et al. *Nat Rev Cancer*. 2018;18(5):269-282. 3. Mariani P, et al. *J Oral Pathol Med*. 2022;51(1):39-51. 4. Kondoh N, Mizuno-Kamiya M. *Cancers (Basel)*. 2022;14(12):2884. 5. Aulakh SS, et al. *Cancers (Basel)*. 2022;14(12):2968. 6. Ferris RL, et al. *Cancer Treat Rev*. 2023;113:102492. 7. Kirtane K, et al. *J Clin Med*. 2022;11(24):7259.

Treatment for LA SCCHN: Is More Better?

- Many attempts to improve outcomes, all negative.
 - No improvement with adjuvant chemotherapy
- RTOG 522: Cetuximab + cisplatin + RT vs Cisplatin-RT¹
 - More frequent interruptions in radiation therapy (26.9% v 15.1%)
 - more grade 3 to 4 radiation mucositis (43.2% v 33.3%, respectively), rash, fatigue, anorexia, and hypokalemia, but not more late toxicity.
 - No differences in 30-day mortality (1.8% v 2.0%, respectively; P = .81), 3-year PFS (61.2% v 58.9%, respectively; P = .76), 3-year OS (72.9% v 75.8%, respectively; P = .32), locoregional failure (19.9% v 25.9%, respectively; P = .97), or distant metastasis (13.0% v 9.7%, respectively; P = .08).
- Lapatinib for resected SCCHN²
 - Lapatinib + Chemo-RT concurrently → 12 months maintenance no improvement in DFS
- LUX Head and Neck 18 months maintenance afatinib after chemo-RT +/salvage surgery³
 - No improvement in DFS \rightarrow Recruitment stopped after preplanned futility analysis
 - More toxicity compared to placebo (acneiform rash, stomatitis, diarrhea)

1. Ang KK, et al. *J Clin Oncol*. 2014;32(27):2940-2950. 3. Burtness B, et al. *JAMA Oncol*. 2019;5(8):1170-1180. Harrington K, et al. J Clin Oncol. 2015;33(35):4202-4209.
 Ciardiello F, Tortora G. N Engl J Med. 2008;358(11):1160-1174.

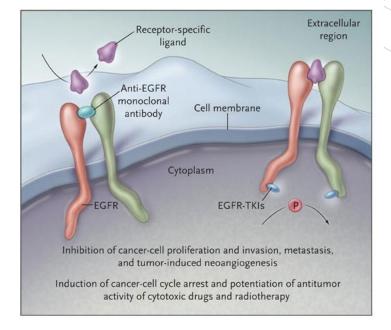
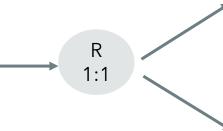


Figure from Ciardiello and Tortora⁴

Treatment for LA SCCHN: Anti-PD1?

Study Name	Phase	Agent	Comparator	Line of Therapy	% PD-L1 Positivity	Overall Survival
Checkmate-141	III	Nivolumab	I.C. ¹	Second line	any	7.5 vs. 5.1 mo
KEYNOTE-040		Pembrolizumab	I.C.	Second line	any	8.4 vs. 6.9 mo
KEYNOTE-048	Ш	P + C ²	EXTREME ³	First line	any	13.0 vs. 10.7 mo
KEYNOTE-048		Pembrolizumab	EXTREME	First line	PD-L1 CPS ⁴ ≥20	14.9 vs. 10.7 mo
KEYNOTE-048	Ш	Pembrolizumab	EXTREME	First line	PD-L1 CPS ≥1	12.3 vs. 10.3 mo

	¹ I.C Investigator's Choice Therapy - cetuximab, docetaxel or
	methotrexate ² P + C - Pembrolizumab plus Chemotherapy (fluorouracil and
	platinum)
	³ EXTREME - platinum + fluorouracil + cetuximab
ig, MD, PhD	⁴ CPS - combined positive score



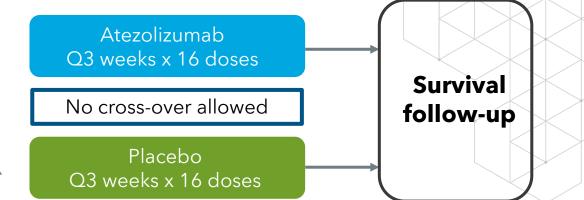
Atezolizumab as Adjuvant Monotherapy After Definitive Therapy of LA SCCHN

Ongoing trial: IMvoke10

Randomized double-blind, placebo-controlled phase III trial

High-risk LA SCCHN post definitive local therapy $N \sim 400$

Stratification factors:


- HPV status
- Response to definitive local therapy
- Whether surgery was part of definitive therapy

High-risk definition:

- HPV negative = Stage IVA or IVB
- HPV positive = Stage III

Response post-definitive local therapy:

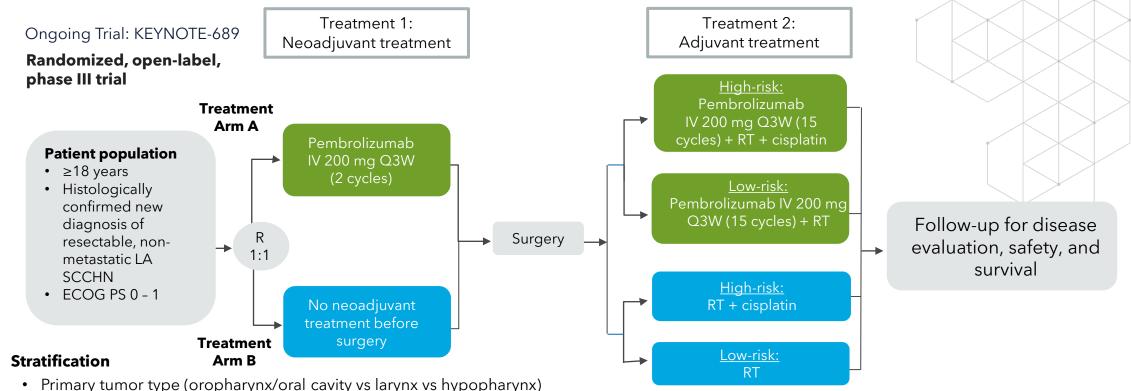
 Radiologic complete response (CR) / partial response (PR) / stable disease (SD) at the 10 - 12 week post-therapy scan

Co-primary endpoints:

- EFS
- OS

Secondary endpoints:

• EFS rates at 1 and 2 years, OS rates at 1,2, and 3 years, safety, PRO


Exploratory objectives:

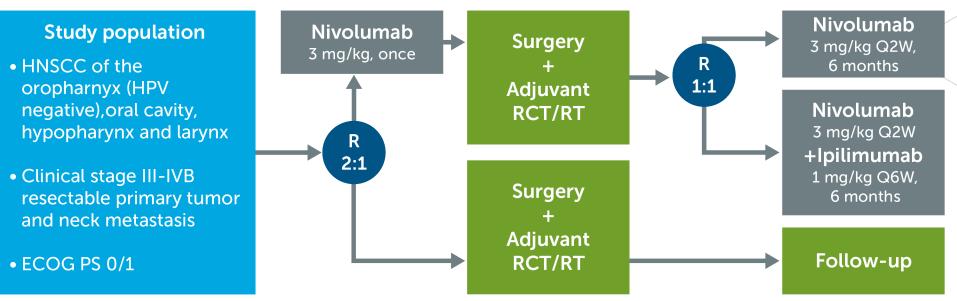
• Biomarkers, PK, and ADA

Haddad, R, et al. ESMO 2018. Abstract 1052. ClinicalTrials.gov Identifier: NCT03452137.

Neoadjuvant and Concurrent/Adjuvant Pembrolizumab in LA SCCHN

• Tumor stage (III vs IVA)

prova


- PD-L1 status (TPS ≥ 50% vs TPS <50%)
- HPV p16 status (oropharynx p16 positive vs oropharynx p16 negative or larynx/hypopharynx/oral cavity)

Uppaluri R, et al. ASCO 2019. Abstract TPS6090. ClinicalTrials.gov Identifier: NCT03765918.

Neoadjuvant Nivolumab and Adjuvant Nivolumab ± Ipilimumab in LA SCCHN

Ongoing Trial: IMSTAR-HN

Randomized, open-label, phase III trial

Primary endpoint: Disease free survival (DFS) at 3 years

Secondary endpoints: Locoregional control (LRC), distant metastasis free survival (DMFS), overall survival (OS), survival in PD-L1 subgroups, DFS in immunotherapy arms, acute toxicity and late morbidity, QoL

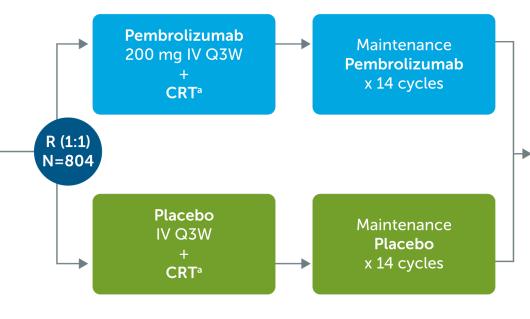
Busch CJ, et al. ASCO 2019. Abstract TPS6095. ClinicalTrials.gov Identifier: NCT03700905.

Summary and Conclusions

- Multimodal treatment of locally advanced SCCHN can be effective, but up to 50% of patients relapse.
- Beyond definitive or adjuvant chemoradiotherapy, no proven treatment strategies to improve outcomes have been identified.
- Prognostic factors for relapsed disease include clinical, genetic and immune factors.
- Novel immunotherapy and targeted therapy approaches are under investigation.

Raising Awareness of Emerging Evidence in LA SCCHN

Ezra E.W. Cohen, MD


KEYNOTE-412 Study Design (NCT03040999)

Patients

- Newly diagnosed, pathologically proven, treament-naive unresected LA HNSCC
- T3-T4 [N0-N3] or any N2a-3 [T1-T1] larynx/hypopharynx/oral cavity/ p16-negative oropharynx cancers
- T4 or N3 p16-positive oropharynx cancer
- Evaluable tumor burden per RECIST v1.1
- ECOG PS 0 or 1
- Candidates for definitive high-dose cisplatin-based CRT

Stratification Factors

- Radiotherapy regimen (AFX vs SFX)
- Tumor site/p16 status (orthopharynx [p16+ vs p16-] or larynx/hypopharynx/oral cavity)
- Disease stage (III vs IV)

Primary endpoint

• Event-free survival (EFS)

Secondary endpoints included:

- OS
- Safety/tolerability

Post-treatment follow-up to assess

Treament until

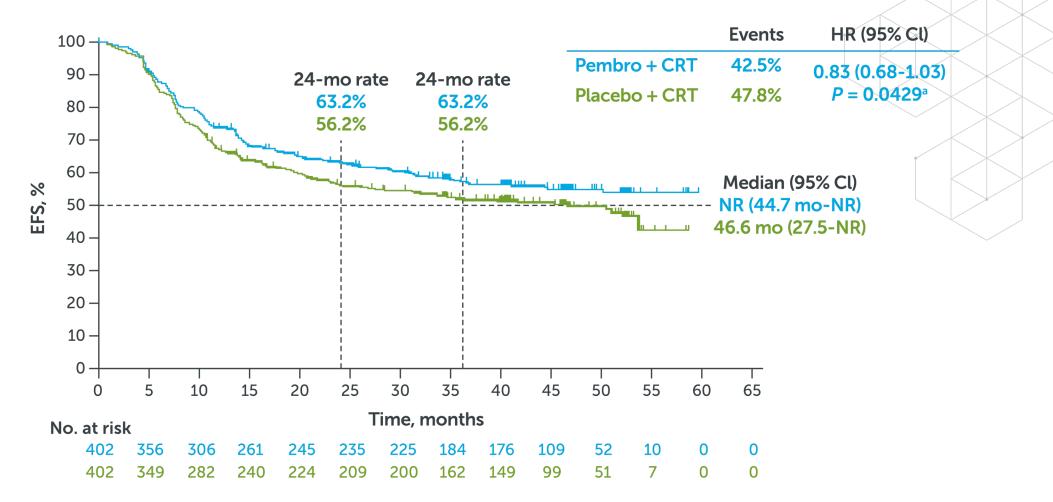
or placebo^b

to withdraw

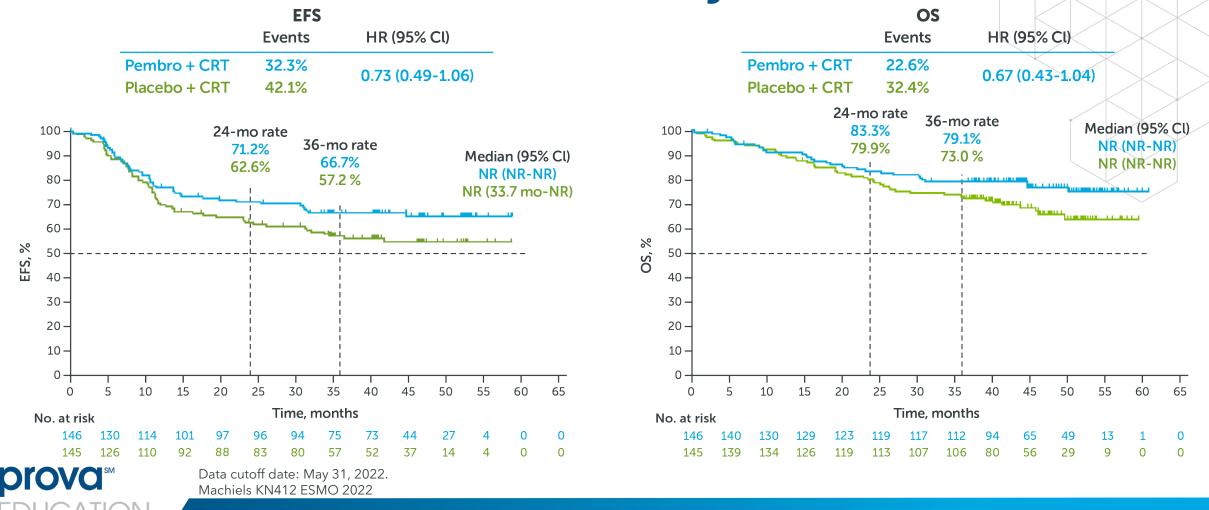
PD or intolerance toxicity

• 17 cycles for pembrolizumab

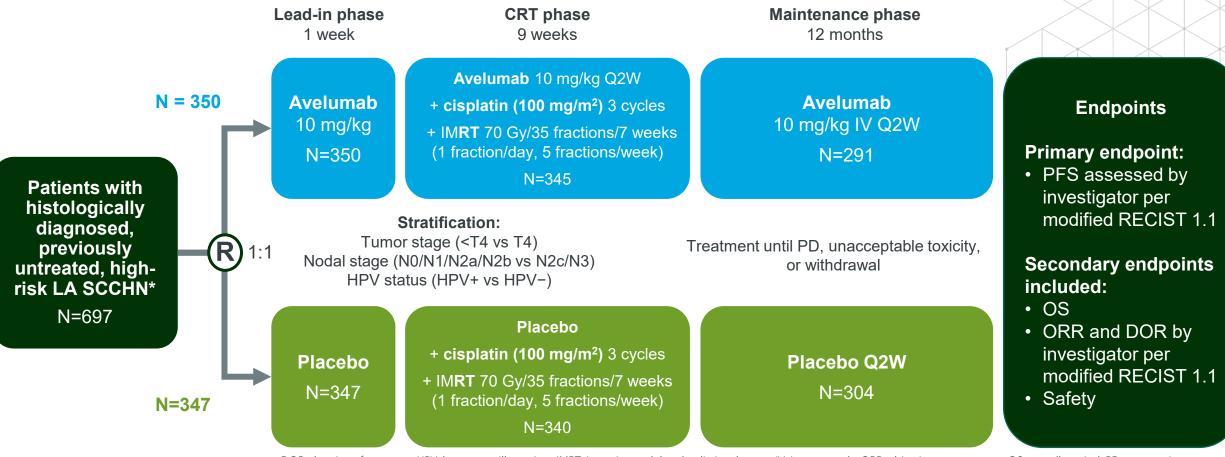
Investigator/patient decision


- Safety
- Disease status
- Survival

^aCRT included cisplatin (100 mg/m2, Q3W) and accelerated fractionation (AFX) (70 Gy, 6 fractions/week for 5 weeks and then 5 fractions for the 6th week, 35 fractions total) or standard fractionation (SFX) (70 Gy, 5 fractions/week for 7 weeks, 35 fractions in total). ^bA pembrolizumab/placebo priming dose was given 1 week before CRT, followed by 2 doses during CRT and 14 doses of maintenance therapy after CRT, for a total of 17 doses.


Machiels KN412 ESMO 2022

Event-Free Survival, ITT Population



^a*P* value did not meet the superiority threshold of one-sided a of 0.0242. Data cutoff date: May 31, 2022. Machiels KN412 ESMO 2022.

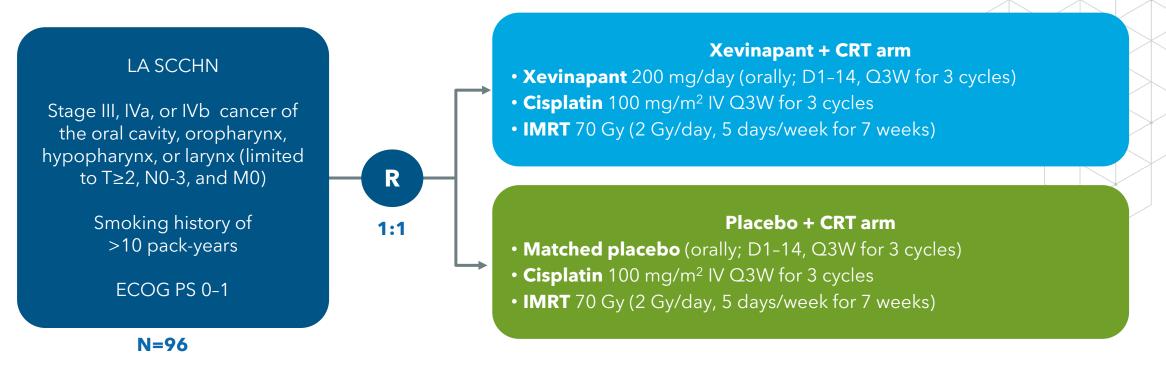
EFS and OS in Patients with PD-L1 CPS ≥20 (Post Hoc Analysis)

JAVELIN Head & Neck 100: Study Design

DOR, duration of response; HPV, human papillomavirus; IMRT, intensity-modulated radiation therapy; IV, intravenously; ORR, objective response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; Q2W, every 2 weeks; R, randomized; RECIST 1.1, Response Evaluation Criteria in Solid Tumors version 1.1.

* High-risk LA SCCHN (oral cavity, oropharynx, larynx, or hypopharynx): HPV-negative disease stage III, IVa, IVb; nonoropharyngeal HPV-positive disease stage III, IVa, IVb; HPV-positive oropharyngeal disease T4 or N2c or N3 (TNM staging per AJCC, 7th edition).

Cohen EW, et al. Presented at ESMO 2020. Abstract 910O.


Primary Endpoint: PFS by Investigator per Modified RECIST 1.1

Cohen EW, et al. Presented at ESMO 2020. Abstract 910O.

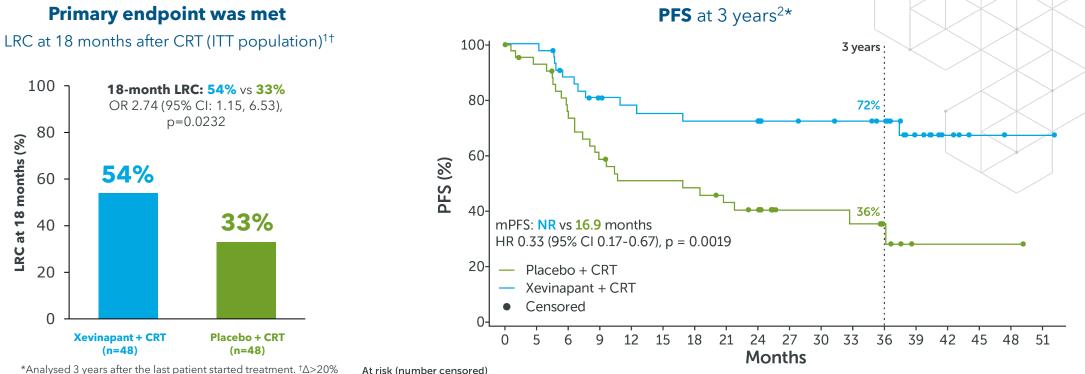
Randomized, Phase II Study of Xevinapant + CRT vs Placebo + CRT in Unresected LA SCCHN¹

- **Primary endpoint:** LRC rate at 18 months after CRT (Δ >20% between arms with 0.8 power at 0.2 significance level)
- Secondary endpoints: PFS, duration of LRC, complete response rate, BOR, DCR, OS, safety

1. Sun X-S, et al. *Lancet Oncol.* 2020;21(9):1173-1178.

BOR, best observed response; CRT, chemoradiotherapy; D, day; DCR, disease control rate; ECOG PS, Eastern Cooperative Oncology Group performance status; Gy, Gray; IMRT, intensity modulated radiotherapy; IV, intravenous; LA SCCHN, locally advanced squamous cell carcinoma of the head and neck; LRC, locoregional control; M, metastasis; N, lymph node; OS, overall survival; PFS, progression-free response; Q3W, every 3 weeks; T, tumor.

Patient Characteristics¹

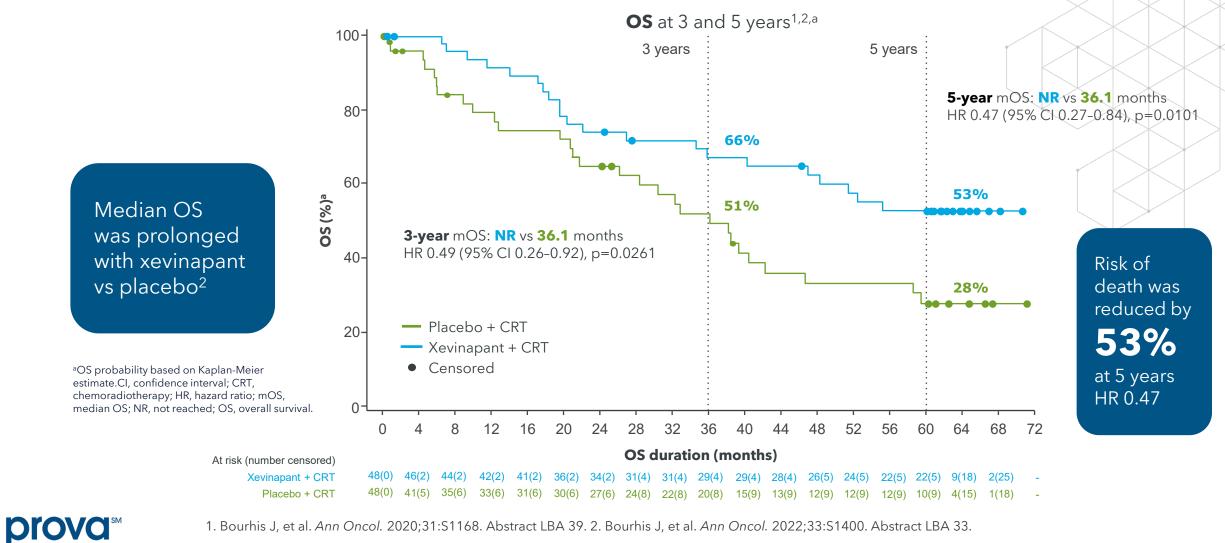

Baseline characteristics	Xevinapant + CRT (n = 48)	Placebo + CRT (n = 48)
Age, mean (range), years	57 (39-70)	59 (56-63)
Smoking history		
Current/former smoker, %	100	100
Total pack-years (range)	40 (15-104)	40 (11–90)
Alcohol consumption		
Drinks per week (range)	21 (1-50)	21 (3-140)
ECOG PS, %		
0	56	56
1	42	44
Primary tumor location, n (%)		
Hypopharynx	7 (15)	10 (21)
Larynx	8 (17)	2 (4)
Oral cavity	2 (4)	3 (6)
Oropharynx	31 (65)	33 (69)
HPV-16 negative	28 (58)	28 (58)
HPV-16 positive	3 (6)	5 (10)
TNM stage, %		
	15	17
IVa	73	67
IVb	13	17

1. Sun X-S, et al. Lancet Oncol. 2020;21(9):1173-1178

CRT, chemoradiotherapy; ECOG PS, Eastern Cooperative Oncology Group performance status; HPV, human papillomavirus; OPC, oropharyngeal cancer; TNM, tumor, node, metastasis.

Xevinapant: Locoregional Control at 18 Months and Progression-Free Survival (3-Year Analysis*)

*Analysed 3 years after the last patient started treatment. †Δ>20% between arms with 0.8 power at 0.2 significance level. Cl, confidence interval; CRT, chemoradiotherapy; HR, hazard ratio; ITT, intent-to-treat; LRC, locoregional control; (m)PFS, (median) progression-free survival; NR, not reached; OR, odds ratio.


 Xevinapant + CRT
 48(0)
 43(5)
 36(7)
 30(10)
 28(11)
 27(11)
 26(11)
 26(12)
 23(14)
 22(15)
 21(16)
 18(19)
 10(26)
 5(31)
 2(34)
 1(35)

 Placebo + CRT
 48(0)
 39(6)
 32(7)
 24(7)
 20(8)
 19(8)
 16(9)
 14(11)
 8(16)
 7(16)
 5(18)
 1(21)
 1(21)
 1(21)
 1(21)

1(35)

Prova™ EDUCATION 1. Sun X-S, et al. Lancet Oncol. 2020;21(9):1173-1178; 2. Tao Y, et al. Eur J Cancer. 2023;183:24-37.

Xevinapant + CRT More Than Halved the Risk of Death After 3 and 5 Years of Follow-up vs Placebo + CRT^{1,2}

1. Bourhis J, et al. Ann Oncol. 2020;31:S1168. Abstract LBA 39. 2. Bourhis J, et al. Ann Oncol. 2022;33:S1400. Abstract LBA 33.

The Safety Profile of Xevinapant + CRT was Comparable to the Safety Profile of Placebo + CRT¹

	Most common TEAEs ^a	Xevinapant + CRT (n = 48), n (%)			Placebo + CRT (n = 47 ^b), n (%)		
	MOST COMMON TEAES	Grade 1–2	Grade 3	Grade ≥4	Grade 1–2	Grade 3	Grade ≥4
	Any	7 (15)	41 (85)	9 (19)	6 (13)	29 (62)	12 (25)
	Mucositis	21 (44)	15 (31)	0	22 (47)	10 (21)	0
	Dysphagia	10 (21)	24 (50)	0	19 (40)	10 (21)	0
	Anemia	12 (25)	17 (35)	0	15 (32)	11 (23)	0
	Weight loss	27 (56)	0	0	22 (47)	0	0
	Radiation skin injury	24 (50)	1 (2)	0	17 (36)	3 (6)	0
^a TEAEs regardless of relation to study drugs of grade 1-2 occurring	Nausea	19 (40)	2 (4)	0	16 (34)	1 (2)	0
in at least 10% of patients, cisplatin- associated adverse events, and all	Xerostomia	19 (40)	1 (2)	0	18 (38)	0	0
grade 3, 4, and 5 events in the safety population; ^b one patient in the	Dermatitis	16 (33)	2 (4)	0	17 (36)	1 (2)	0
placebo group did not receive the study drug and was not included in	Neutropenia	4 (8)	7 (15)	4 (8)	4 (9)	11 (23)	2 (4)
the safety analysis; ^c renal insufficiency, febrile neutropenia,	Tinnitus	15 (31)	0	0	10 (21)	0	0
thrombocytopenia, peripheral sensory neuropathy, or severe	ALT increased	7 (15)	6 (13)	0	6 (13)	2 (4)	0
vomiting; ^d in the placebo group, two (4%) deaths were due to adverse events (one multiple organ failure and one asphyxia; neither was considered to be related to treatment). CRT, chemoradiotherapy; TEAE, treatment-emergent adverse event.	AST increased	6 (13)	3 (6)	0	2 (4)	1 (2)	0
	Acute kidney injury	8 (17)	2 (4)	0	3 (6)	4 (9)	0
	Blood creatinine increased	4 (8)	0	0	5 (11)	1 (2)	0
	Renal failure	3 (6)	1 (2)	0	5 (11)	0	0
	Chronic kidney disease	2 (4)	1 (2)	0	0	2 (4)	0

• There were increases in mucositis, dysphagia, and anemia with xevinapant + CRT vs placebo + CRT, consistent with the radiosensitizing effect of xevinapant

- Xevinapant did not increase the frequency or severity of cisplatinassociated adverse events,^c with the exception of grade 1-2 tinnitus
- No deaths due to adverse events occurred in the xevinapant group^d

1. Sun X-S, et al. Lancet Oncol. 2020;21(9):1173-1178.

Phase II Data Summary

Efficacy

- Xevinapant + CRT significantly improved LRC vs placebo + CRT for patients with unresected LA SCCHN (primary endpoint)¹
- The addition of xevinapant to CRT improved PFS and prolonged DoR²
- Xevinapant + CRT improved 5-year OS vs placebo + CRT²

The safety profile of the two arms were comparable, with expected increases in mucositis, dysphagia, and anemia in the xevinapant arm due to the radiosensitizing effect of xevinapant¹

- Xevinapant treatment did not increase the frequency or severity of cisplatin-associated adverse events, with the exception of grade 1-2 tinnitus¹
- Safety profile, including late-onset toxicity, was similar between arms²
- The addition of xevinapant to CRT did not compromise compliance vs placebo + CRT¹

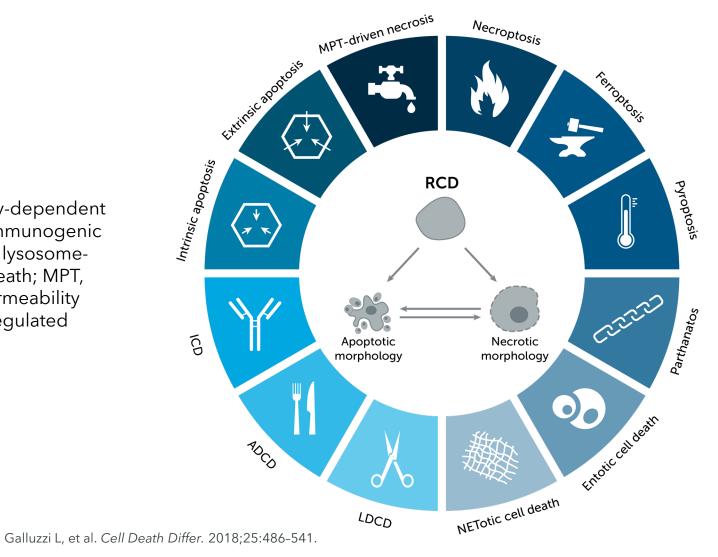
CRT, chemoradiotherapy; DoR, duration of response; LA SCCHN, locally advanced squamous cell carcinoma of the head and neck; LRC, locoregional control; OS, overall survival; PFS, progression-free survival.

1. Sun X-S, et al. Lancet Oncol. 2020;21(9):1173-1178. 2. Bourhis J, et al. Ann Oncol. 2022;33:S1400. Abstract LBA 33.

Safety

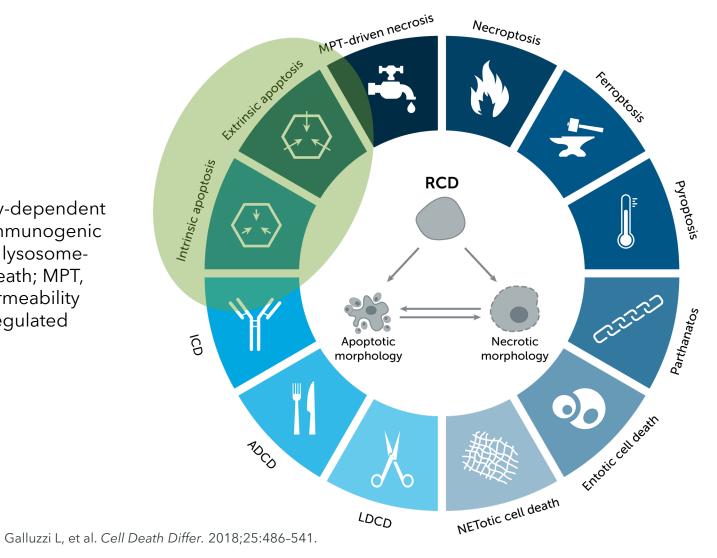
Conclusions

- HNSCC is a locally advanced disease
 - Presents locoregionally
 - LRC paramount
- Cisplatin/RT remains SOC for platinum-eligible patients
- Concomitant RT/CRT and IO has not proven efficacious
- Xevinapant is a small molecule IAP inhibitor that has shown promising efficacy in a randomized phase 2 trial


A Comprehensive Analysis of IAPs

Kevin Harrington, MBBS, PhD

Mechanisms of Cell Death


ADCD, autophagy-dependent cell death; ICD, immunogenic cell death; LDCD, lysosomedependent cell death; MPT, mitochondrial permeability transition; RCD, regulated cell death.

Mechanisms of Cell Death

ADCD, autophagy-dependent cell death; ICD, immunogenic cell death; LDCD, lysosomedependent cell death; MPT, mitochondrial permeability transition; RCD, regulated cell death.

Mechanisms of Combinatorial Therapy With (Chemo)radiotherapy Plus Immunotherapy

ATP, adenosine triphosphate; cGAS, cyclic GMP-AMP synthase; cGAMP, cyclic GMP-AMP; DC, dendritic cell; GzmB, granzyme B; HMGB1, high-mobility group box-1 protein; ICI, immune checkpoint inhibitor; IFN, interferon; IRF3, interferon regulatory factor 3; MHC, major histocompatibility complex; PFN, perforin; STING, stimulator of interferon genes; TAA, tumor-associated antigen.

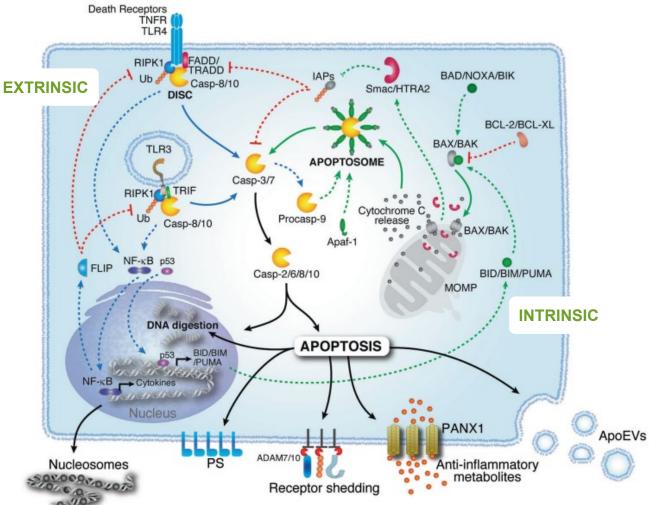

prova

Figure from Nenclares P, et al. Am Soc Clin Oncol Educ Book. 2022;42:1-16.

Apoptotic Pathways

DISC, death-inducing signaling complex; FADD, FAS-associated death domain protein; IAP, inhibitor of apoptosis proteins.

Bertheloot D, et al. Cell Mol Immunol. 2021;18:1106-1121.

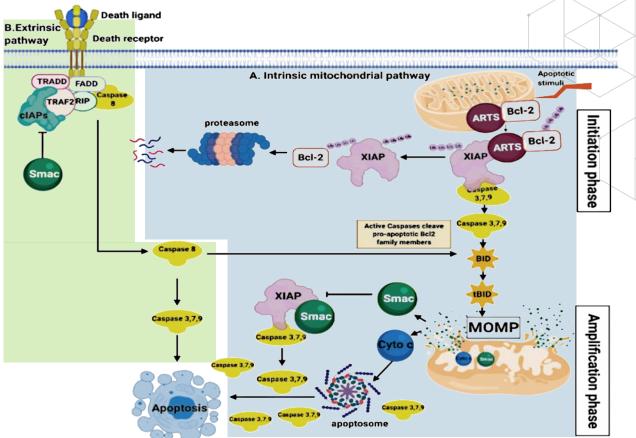
Apoptotic Pathways (Cont.)

Intrinsic Pathway

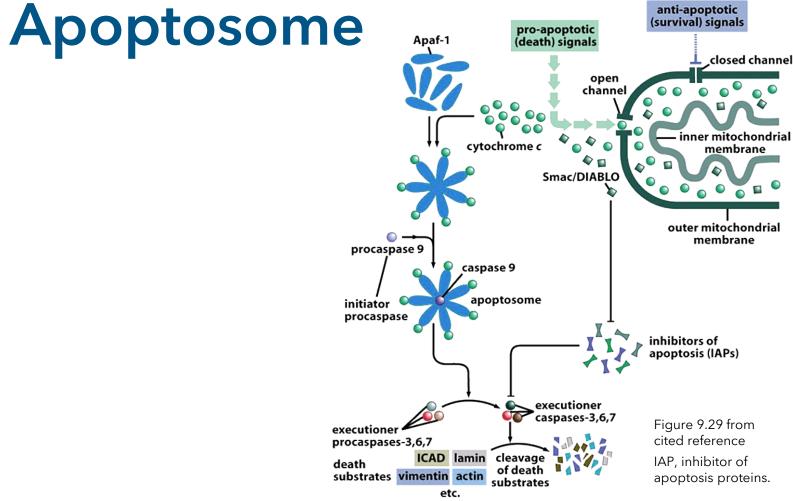
- Intracellular sensing of cell viability
- Continuous audit of balance of pro- and anti-apoptotic factors
- Responsive to DNA damage
- Mediated through mitochondrion
- Signal involves cytochrome C release from mitochondrion
- Generation of apoptosome
- Signature is caspase 9
- Executioner is caspase 3

FADD, FAS-associated death domain protein.

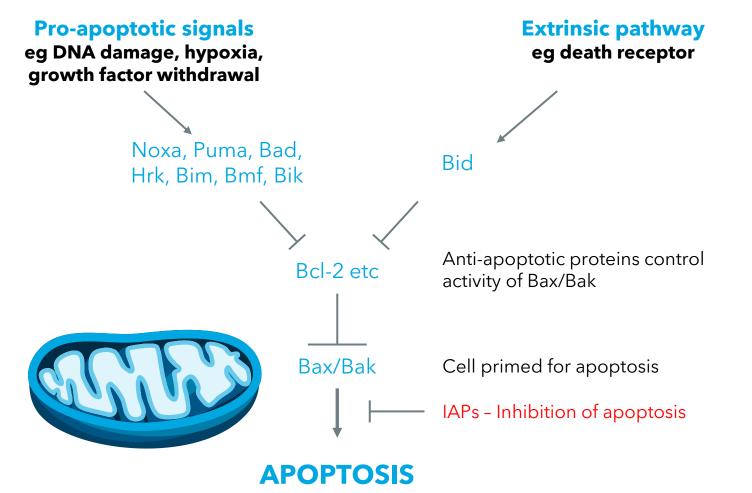
Extrinsic Pathway


- Extracellular death ligands act on death receptors
- Activates FADD
- Mediated through generation of activated caspase 8
- Executioner is caspase

Apoptosis: Intrinsic and Extrinsic Pathways

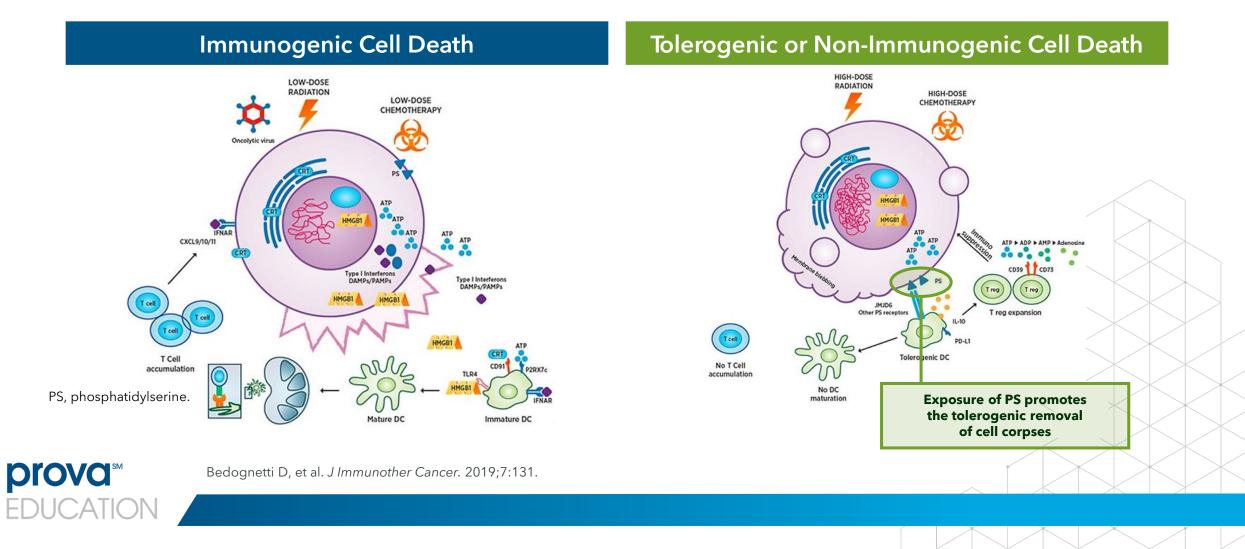

- The involvement of overexpression of members of the inhibitor of apoptosis protein family as an anti-apoptotic mechanism
- XIAP/SMAC linkage between extrinsic and intrinsic pathway

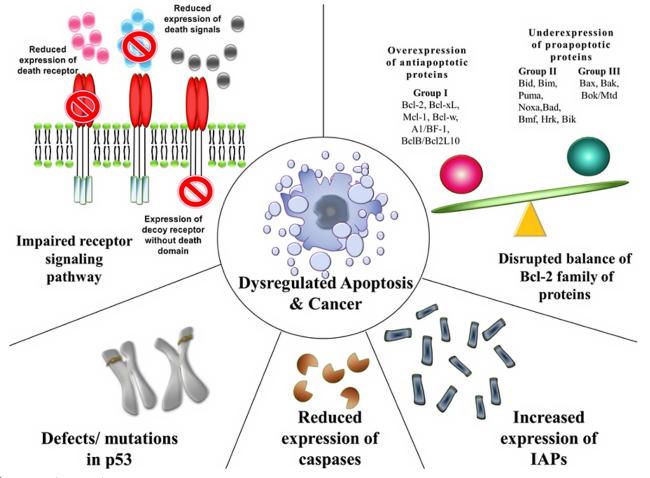
cIAP, cellular inhibitor of apoptosis proteins; XIAP, X-linked inhibitor of apoptosis.


Downstream Effects of Formation of the

EDUCATION

Weinberg R. The Biology of Cancer. New York: Garland Science; 2007.

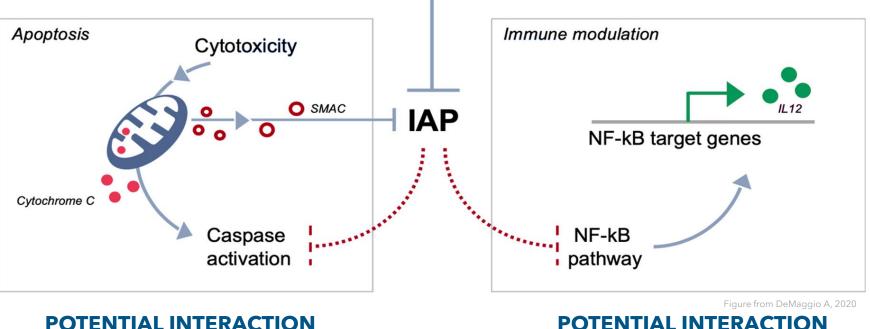

General Scheme of Control



Elmore S. Toxicol Pathol. 2007;35:495–516.

Promoting Immunogenic (Versus Tolerogenic) Cell Death

Cancer's Resistance to Apoptosis: The Role of IAPs



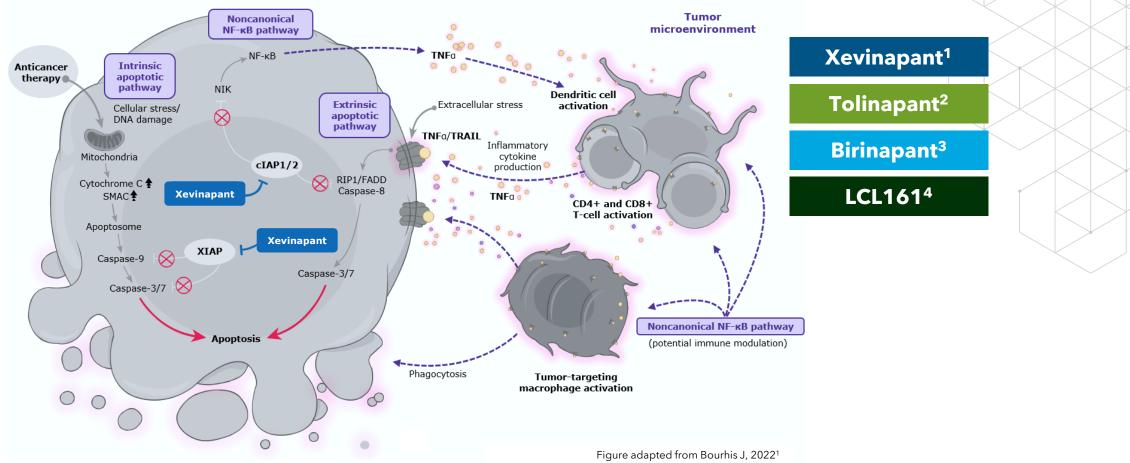
IAP, inhibitor of apoptosis proteins.

Wong RS. J Exp Clin Cancer Res. 2011;30:87.

IAP Inhibitors Modify Two Hallmarks of Cancer

SMAC mimetic

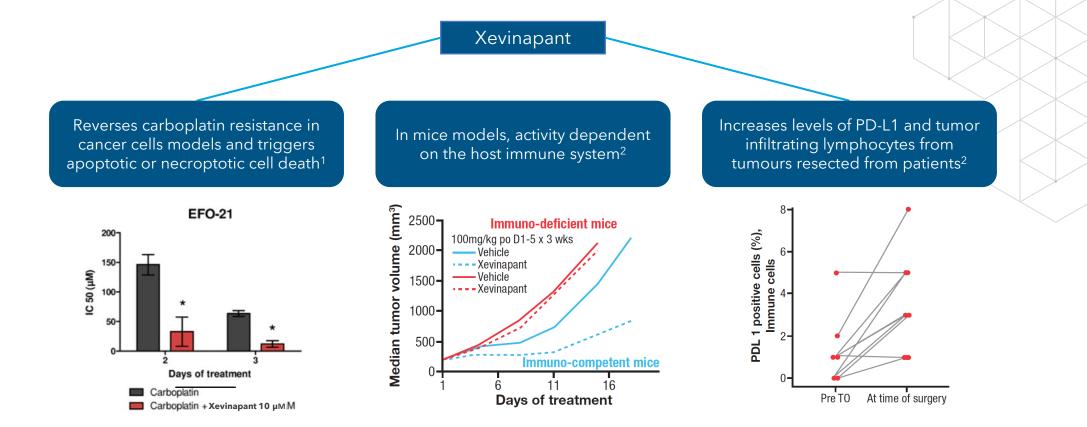
POTENTIAL INTERACTION WITH CHEMORADIOTHERAPY


POTENTIAL INTERACTION WITH IMMUNOTHERAPY

IAP, inhibitor of apoptosis proteins

DeMaggio A, 2020. Available at: <u>https://www.blu-amp.com/home/blog/pipeline/ESMO%202020%20Preview%2C%20part%202%3A%20new%20and-</u>or%20notable. Accessed August 2023.

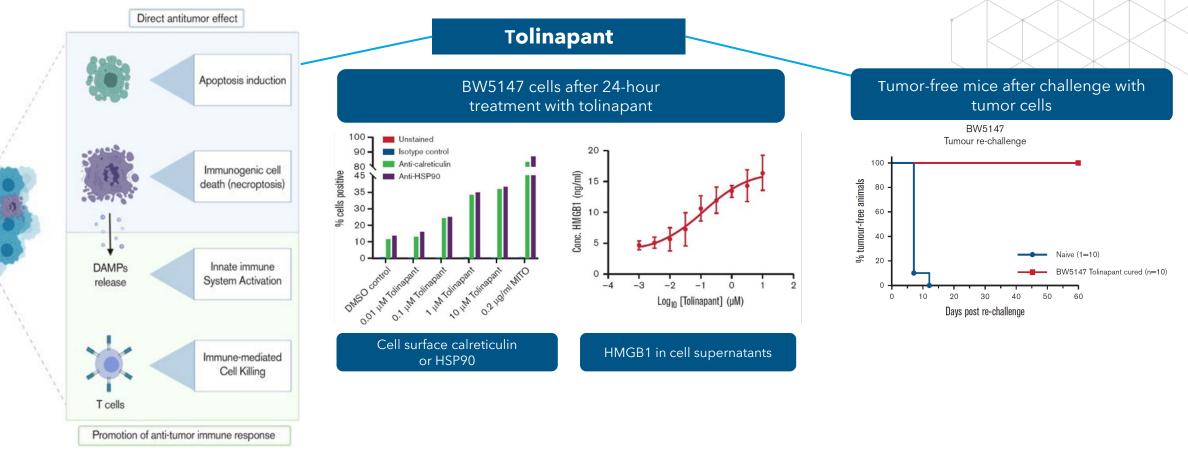
IAP Inhibitors Overcome Resistance to Apoptosis



CD, cluster of differentiation; clAP1/2, cellular IAP 1 and 2; FADD, Fas-associated protein with death domain; IAP, inhibitor of apoptosis protein; NF-κB, nuclear factor kappa B; NIK, NF-κB-inducing kinase; RIP1, receptor interacting serine/threonine kinase 1; SMAC, second mitochondriaderived activator of caspases; TNFα, tumour necrosis factor alpha; TRAIL, TNF-related apoptosis-inducing ligand; XIAP, X-linked IAP.

1. Bourhis J, et al. *Future Oncol*. 2022;18:1669-1678; 2. Ferrari N, et al. *Blood Adv*. 2021;5:4003-4016; 3. Kearney CJ, et al. *Cell Death Differ*. 2017;24:1705-1716; 4. Chesi M, et al. *Nat Med*. 2016;22:1411-1420.

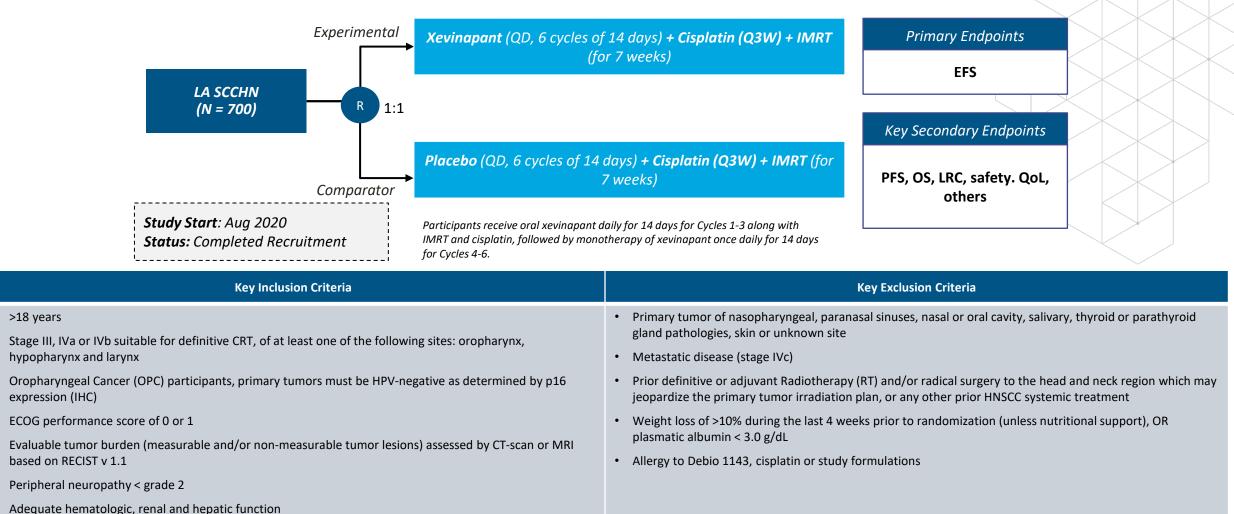
IAP Inhibitors Can Trigger Cancer Cell Death


IAP, inhibitor of apoptosis proteins; PD-L1, programmed death-ligand 1.

1. Thibault B, et al. Sci Rep. 2018;8:17862; 2. Azaro-Pedrazzoli A, et al. Ann Oncol. 2020;31(Suppl_4):S462-S504.

IAP Inhibitors Induce Necroptosis in Tumor Cells

Induction of immunogenic forms of cell death in vitro - DAMPs release

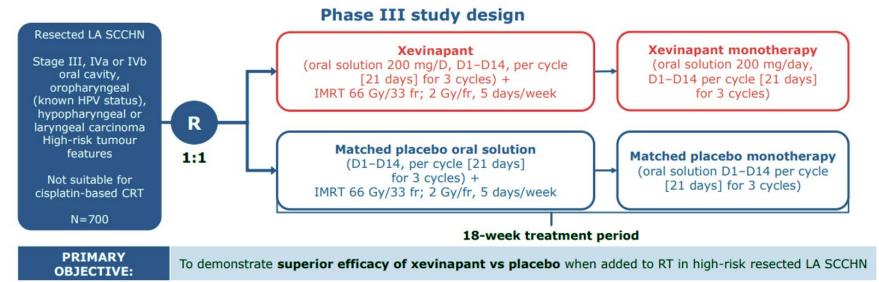


DAMP, damage-associated molecular pattern; IAP, inhibitor of apoptosis proteins.

Ferrari N, et al. Blood Adv. 2021;5:4003-4016.

Xevinapant: Design of TrilynX Phase III Trial

>18 years


•

•

Clinicaltrials.gov. NCT04459715. https://www.clinicaltrials.gov/study/NCT04459715. Accessed August 2023.

Xevinapant: Design of X-RayVision Trial

Phase III, randomised study of xevinapant + IMRT vs placebo + IMRT for resected high-risk, cisplatin-ineligible LA SCCHN patients

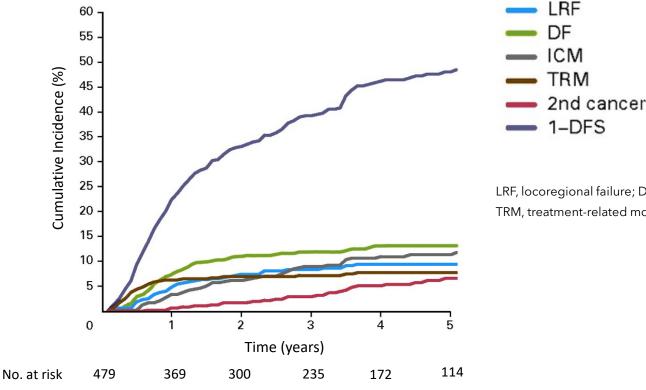
Primary endpoint: Disease-free survival

Secondary endpoints: Overall survival, time to subsequent cancer treatments, safety, HRQoL

Clinicaltrials.gov. NCT05386550. <u>https://clinicaltrials.gov/ct2/show/NCT05386550</u>. Accessed August 2022.

Understanding Clinical Trials and Their Endpoints in LASCCHN

Ezra E.W. Cohen, MD



Endpoints in LA-HNSCC Trials

- Overall Survival
 - Gold standard
 - Easily defined and assessed
 - Unbiased
 - Competing risks can confound survival
 - Longer follow-up
 - Relatively larger sample size
- HRQOL
- Progression-free, Event-free, Disease-free survival
- Time to Progression, Time to Treatment Failure
- Locoregional control
- Distant control

Cumulative Incidence Curves of Individual Events (Additive to the Complement of Disease-Free Survival (1-DFS)

LRF, locoregional failure; DF, distant failure; ICM, intercurrent mortality; TRM, treatment-related mortality; 2nd cancer, second malignancy

Mell LK, et al. J Clin Oncol. 2010;28 (1):15-20.

EFS/DFS

- DFS: time from randomization until disease recurrence or death from any cause
 - Appropriate when a large percentage of patients achieve CR
- EFS: time from randomization to any of the following events: progression of disease that precludes surgery, local or distant recurrence, or death due to any cause
- Earlier assessment and smaller sample size compared to OS
- Objective and quantitative assessment
- Assessment bias
- Definitions vary
- Timing of assessments influence time to event
- Includes death from other causes

Why EFS/DFS/LRC Matter in HNSCC?

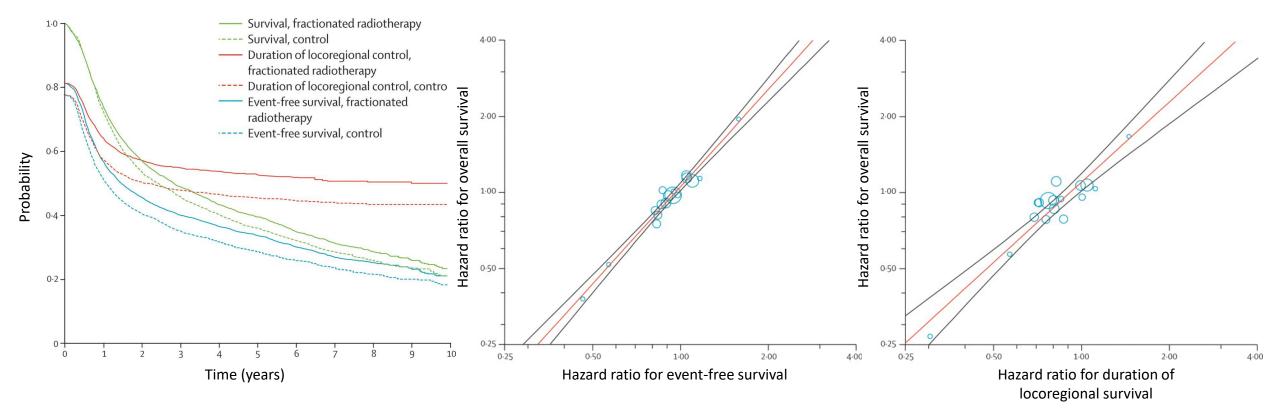
- HNSCC is a locoregional disease
 - 90% of patients present with local or locoregional disease
 - > Metastatic disease at presentation is uncommon
 - Symptoms reflect locoregional disease
 - Patterns of recurrence predicate intervention
 - > Locoregional disease is often symptomatic
 - > Distant disease responds better to IO when tumor burden is lower

Endpoint Utilization

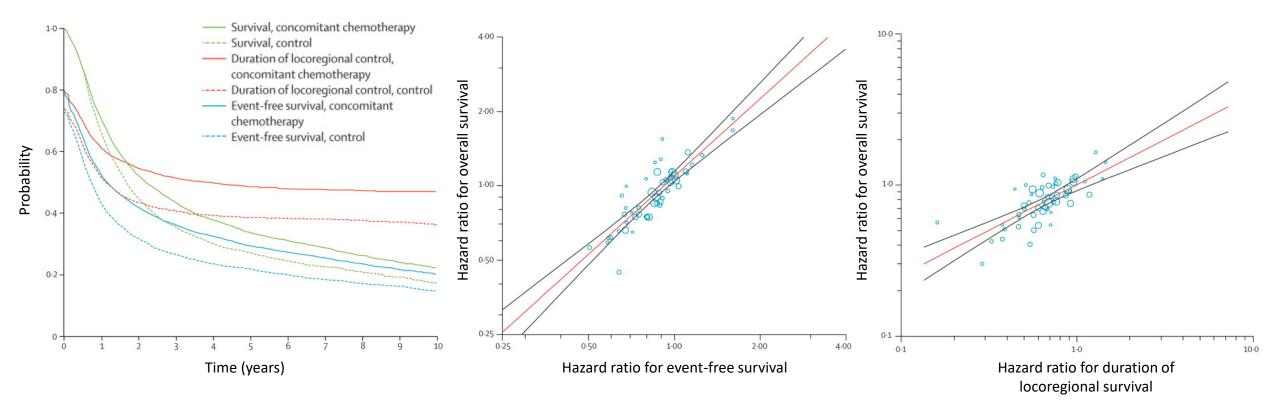
- Le Tourneau et al. examined all published randomized trials from 1978-2008 in the English literature
 - 40 trials total
 - 25 trials used LRC as endpoint
 - > 2nd most common endpoint
 - > Heterogeneous definition e.g., CR at end of treatment, salvage surgery, pathologic response, location of recurrence, etc.
 - 17 trials used DFS as endpoint

Surrogate Endpoints for Overall Survival in Locally Advanced Head and Neck Cancer: Meta-Analyses of Individual Patient Data

	Duration of locoregional control			Event-free survival		
	Individual, 🛙 (95% CI)	Trial, R (95% CI)	Trial (2 years), R (95% Cl)	Individual, I (95% CI)	Trial, R (95% CI)	Trial (2 years), R (95% CI)
Radiotherapy	0.76 (0.76-0.76)	0.94 (0.89–1.00)	0.90 (0.81–0.99)	0.86 (0.86-0.86)	0.98 (0.97–1.00)	0.95 (0.90–1.00)
Concomitant chemotherapy	0.76 (0.76-0.77)	0.72 (0.60-0.85)	0.70 (0.57-0.83)	0.86 (0.86–0.86)	0·86 (0·7 9 -0·93)	0·75 (0·64–0·87)
Induction chemotherapy	0.76 (0.75-0.76)	0-53 (0-28–0-78)	0.59 (0.36-0.81)	0·90 (0·90–0·90)	0.79 (0.66–0.92)	0.52 (0.26-0.77)
Adjuvant chemotherapy	0-65 (0-64–0-65)	0.84 (0.67–1.01)	0·75 (0·49–1·01)	0.82 (0.82–0.82)	0.93 (0.85–1.01)	0.83 (0.65–1.01)


Image: Image:

Correlation coefficients for the candidate surrogate endpoints and overall survival in the different meta-analyses


Michiels S, et al. Lancet Oncol. 2009;10(4):341-350.

CRT Trials

Endpoint Definitions in Recent Trials

• KN412

- EFS is defined as the time from the date of randomization to the date of first record of progression per RECIST v1.1 by blinded independent central review ([a] locoregional progression or recurrence or [b] distant metastasis), salvage surgery at the primary tumor site when invasive cancer is present, neck dissection performed >20 weeks after completion of CRT when invasive cancer is present, or death from any cause.

• TrilynX

- EFS by BIRC: time from randomization to the occurrence of death, clinical or radiological progression, primary treatment failure, radiological or clinical relapse after achieving a loco-regional CR or the occurrence of secondary cancers

Conclusions

- Continued unmet need to improve efficacy in unresected LA-HNSCC
- Shifting timing of IO and RT might prove beneficial
- EFS/DFS appear to be excellent surrogate endpoints for OS in LA-HNSCC
 - Inherent benefit of no recurrence even if salvageable

Panel Discussion and Audience Q&A

Ezra Cohen, MD University of California, San Diego Health San Diego, CA

Kevin Harrington, MBBS, PhD The Institute of Cancer Research London, UK

Deborah J. Wong, MD, PhD UCLA Health Los Angeles, CA

Our Message Worth Sharing

Our Message Worth Sharing

Dr. Cohen


• Clinical significance of early endpoints

Dr. Harrington

• How IAPs have the potential to change SOC

Dr. Wong

• Where the current landscape is going

Thank You!

EDUCATION