# New Options and Strategies for CV Risk Reduction in Diabetes: What the Data Tell Us

| June 7, 2 | 2019   InterContinental San Francisco   San Francisco, CA                                                      |
|-----------|----------------------------------------------------------------------------------------------------------------|
| Agenda    |                                                                                                                |
| 6:30 рм   | Registration and Buffet Dinner                                                                                 |
| 7:00      | <b>Program Overview</b><br>Robert H. Eckel, MD, Chair                                                          |
| 7:15      | New Cholesterol Guidelines: What You Should Know<br>Robert H. Eckel, MD, Chair                                 |
| 7:35      | <b>Omega-3 FAs and their Use in Patients with ASCVD</b><br>Deepak L. Bhatt, MD, MPH                            |
| 7:55      | Roundup of Recent Clinical Trial Evidence to Reduce ASCVD Events<br>Sergio Fazio, MD, PhD                      |
| 8:15      | Panel Discussion and Q&A                                                                                       |
| 8:35      | Case-based Learning on Personalization of Care in Patients with<br>Diabetes and High-risk ASCVD<br>All Faculty |
| 8:50      | <b>Closing Comments</b><br>Robert H. Eckel, MD, Chair                                                          |
| 9:00 рм   | Adjourn                                                                                                        |

Faculty slides are available online: medtelligence.net/june7 Scroll to the "Related" section and click on "Syllabus" This syllabus is not intended to be an exact representation of the faculty presentations.

It is being provided as a useful reference that we encourage you to use during and after the activity.



New Options and Strategies for CV Risk Reduction in Diabetes: What the Data Tell Us

June 7, 2019



# Welcome and Program Overview

Robert H. Eckel, MD, Chair



# Robert H. Eckel, MD, Chair

Charles A. Boettcher II Endowed Chair in Atherosclerosis
Professor of Medicine – Division of Endocrinology, Metabolism and Diabetes, and Cardiology
Professor of Physiology and Biophysics
University of Colorado School of Medicine
Director of Lipid Clinic
University of Colorado Hospital
Aurora, CO

Disclosures: Consulting Fees: Novo Nordisk, Sanofi; Contracted Research: ENDEC

# New Cholesterol Guidelines: What You Should Know

Robert H. Eckel, MD, Chair



#### ACC Risk Calculator Plus to Assess Risk Category

tools.acc.org/ascvd-risk-estimator-plus/#!/calculate/estimate

#### 1. Use the calculator to Assess Risk Category

| <5%        | 5% to <7.5%       | ≥7.5% to <20%       | ≥20%        |
|------------|-------------------|---------------------|-------------|
| "Low Risk" | "Borderline Risk" | "Intermediate Risk" | "High Risk" |

- Estimates 10-year hard ASCVD (nonfatal MI, CHD death, stroke) for ages 40-79 and lifetime risk for ages 20-59
- Intended to promote patient-provider risk discussion, and best strategies to reduce risk
- ≥7.5% identifies statin eligibility, not a mandatory prescription for a statin
- 2. Then use the new ACC/AHA Cholesterol guideline algorithms to guide management

#### 3. Also available: MESA 10-Year CHD Risk with Coronary Artery Calcification\* -iPhone and Android app







#### **Nutrition Lifestyle Recommendations: Lipids and BP**





- Dietary patterns emphasis-based:
  - DASH and Mediterranean-style eating plans
- Fruits, vegetables, and whole grains
- 30 35% fat intake
  - <6% saturated fats, no trans fats
- Low sodium (<2400 mg/day)
- Cut out processed or pre-prepared food
- Healthy eating for a lifetime





#### **Physical Activity Guidelines: Lipids and BP**



Advise adults to engage in aerobic physical activity

- 3 to 4 sessions a week
- lasting on average 40 min per session
- involving moderate-to-vigorous intensity physical activity.

Eckel RH et al, Circulation 129 (25 Suppl 2):S76-99, 2014.

#### Eggs, Dietary Cholesterol and Cardiovascular Disease Revisited

EDITORIAL

#### Reconsidering the Importance of the Association of Egg Consumption and Dietary Cholesterol With Cardiovascular Disease Risk

Robert H. Eckel, MD

Nutrition research, in contrast with randomized clinical trials that compare a drug with placebo, is more difficult for many reasons, including complexities in data gathering and changes in human behavior over time. In this issue of JAMA, Zhong and

#### Related article page 1081

colleagues<sup>1</sup> report new insights about a controversial topic, the association of egg

consumption and dietary cholesterol with cardiovascular disease (CVD) incidence and all-cause mortality. Clearly, the topic of this study is important to clinicians, patients, and the public at large because the association of egg consumption and dietary cholesterol with CVD, although debated for decades, has more recently been thought to be less important. Compared with the meta-analyses and reviews previously published, this In the report by Zhong et al,<sup>1</sup> a harmonized approach was used to analyze self-reported baseline nutritional data on macronutrient intake in 29 615 adults from 6 prospective US cohorts, a group with high racial and ethnic diversity, to examine cardiovascular disease outcomes over a median of 17.5 years. The main finding was that higher consumption of eggs and dietary cholesterol (which included eggs and meats) was significantly associated with incident CVD and all-cause mortality, with a doseresponse relationship. Another important finding in the study was that associations between dietary cholesterol and incident CVD and all-cause mortality were no longer significant after adjusting for consumption of eggs and processed and unprocessed red meat. Moreover, the dietary cholesterol content of eggs fully explained the association between egg consumption and inci-



\*ACS, hx of MI, stable or unstable angina, coronary or other arterial revascularization, stroke, transient ischemic attack (TIA), or peripheral artery disease (PAD) including aortic aneurysm, all of atherosclerotic origin.

Class I (Strong). Benefit >>> Risk.

- Class IIa (Moderate). Benefit >> Risk.
- Class IIb (Weak). Benefit  $\geq$  Risk.

# Very High Risk of Future CVD Events

| Major ASCVD Events                                                                                               |
|------------------------------------------------------------------------------------------------------------------|
| Recent ACS (within the past 12 mo)                                                                               |
| History of MI (other than recent ACS event listed above)                                                         |
| History of ischemic stroke                                                                                       |
| Symptomatic peripheral arterial disease (history of claudication with ABI <0.85, or previous revascularization o |
| amputation (S4.1-39))                                                                                            |
| High-Risk Conditions                                                                                             |
| Age ≥65 γ                                                                                                        |
| Heterozygous familial hypercholesterolemia                                                                       |
| listory of prior coronary artery bypass surgery or percutaneous coronary intervention outside of the major       |
| ASCVD event(s)                                                                                                   |
| Diabetes mellitus                                                                                                |
| Hypertension                                                                                                     |
| CKD (eGFR 15-59 mL/min/1.73 m <sup>2</sup> ) (\$4.1-15, \$4.1-17)                                                |
| Current smoking                                                                                                  |
| Persistently elevated LDL-C (LDL-C ≥100 mg/dL [≥2.6 mmol/L]) despite maximally tolerated statin therapy and      |
| ezetimibe                                                                                                        |
| History of congestive HF                                                                                         |



\*ACS, hx of MI, stable or unstable angina, coronary or other arterial revascularization, stroke, transient ischemic attack (TIA), or peripheral artery disease (PAD) including aortic aneurysm, all of atherosclerotic origin.

Class I (Strong). Benefit >>> Risk.

- Class IIa (Moderate). Benefit >> Risk.
- Class IIb (Weak). Benefit  $\geq$  Risk.



[Epub ahead of print].



# Successful Statin Add-on Trials (5–15% RRR)



CI=confidence interval; Cor Revasc=coronary revascularization; EZ=ezetimibe; HR=hazard ratio; MACE=major adverse cardiovascular events;

- MI =myocardial infarction; NNT=number needed to treat; Simva=simvastatin; UA unstable angina.
- 1. Cannon CP et al. N Engl J Med. 2015;372:2387-97.
- 2. Sabatine MS et al. N Engl J Med. 2017;376:1713-22.
- 3. Schwartz GG et al. N Engl J Med. 2018;379:2097-107.



Class I (Strong). Benefit >>> Risk. Class IIa (Moderate). Benefit >> Risk. Class IIb (Weak). Benefit  $\geq$  Risk. Grundy SM et al. *Circulation*. 2018;Nov. 10 [Epub ahead of print]. Although high TG was noted as a CVD risk factor, treatment of HTG was covered only briefly and prescription omega-3 was not mentioned. (Published simultaneously with REDUCE-IT.)



#### **ASCVD Risk Enhancers:**

- · Family history of premature ASCVD
- Persistently elevated LDL-C ≥160 mg/dL
- Chronic kidney disease
- Metabolic syndrome
- · Conditions specific to women (eg, preeclampsia, premature menopause)
- · Inflammatory disease (especially rheumatoid arthritis, psoriasis, HIV)
- Ethnicity (eg, South Asia ancestry)

#### Lipid/Biomarkers:

• Persistently elevated triglycerides (≥175 mg/dL)

#### In selected individuals if measured:

- hs-CRP ≥2.0 mg/L
- Lp(a) levels >50 mg/dL or >125 nmol/L
- Apo B ≥130 mg/dL
- Ankle-brachial index (ABI) <0.9

Class I (Strong). Benefit >>> Risk. Class IIa (Moderate). Benefit >> Risk. Class IIb (Weak). Benefit  $\geq$  Risk.

Grundy SM et al. *Circulation*. 2018;Nov. 10 [Epub ahead of print]. Although high TG was noted as a CVD risk factor, treatment of HTG was covered only briefly and prescription omega-3 was not mentioned. (Published simultaneously with REDUCE-IT.)

#### Hypertriglyceridemia

| Recommendations for Hypertriglyceridemia |      |                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| COR                                      | LOE  | Recommendations                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| I                                        | B-NR | In adults 20 years of age or older with moderate hypertriglyceridemia<br>(fasting or nonfasting triglycerides 175 to 499 mg/dL [1.9 to 5.6 mmol/L]),<br>clinicians should address and treat lifestyle factors (obesity and<br>metabolic syndrome), secondary factors (diabetes mellitus, chronic liver<br>or kidney disease and/or nephrotic syndrome, hypothyroidism), and<br>medications that increase triglycerides. |  |  |
| lla                                      | B-R  | In adults 40 to 75 years of age with moderate or severe<br>hypertriglyceridemia and ASCVD risk of 7.5% or higher, it is reasonable<br>to reevaluate ASCVD risk after lifestyle and secondary factors are<br>addressed and to consider a persistently elevated triglyceride level as a<br>factor favoring initiation or intensification of statin therapy (see Section<br>4.4.2.).                                       |  |  |

2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/ APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology Foundation/ American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 2018;Nov 8:[Epub ahead of print]

#### Severe Hypertriglyceridemia

#### REVIEW

#### **Annals of Internal Medicine**

#### The Chylomicronemia Syndrome Is Most Often Multifactorial A Narrative Review of Causes and Treatment

#### Alan Chait, MD, and Robert H. Eckel, MD

The chylomicronemia syndrome occurs when triglyceride levels are severely elevated (usually >16.95 mmol/L [1500 mg/dL]) and is characterized by such clinical features as abdominal pain, acute pancreatitis, eruptive xanthomas, and lipernia retinalis. It may result from 1 of 3 conditions: the presence of secondary forms of hypertriglyceridemia concurrent with genetic causes of hypertriglyceridemia, termed multifactorial chylomicronemia syndrome (MFCS); a deficiency in the enzyme lipoprotein lipase and some associated proteins, termed familial chylomicronemia syndrome (FCS); or familial partial lipodystrophy. Most chylomicronemia syndrome cases are the result of MFCS; FCS is very rare. In all these conditions, triglyceride-rich lipoproteins accumulate because of impaired plasma clearance. This review describes the 3 major causes of the chylomicronemia syndrome; their consequences; and the approaches to treatment, which differ considerably by group.

Ann Intern Med. 2019;170:626-634. doi:10.7326/M19-0203 Annals.org For author affiliations, see end of text. This article was published at Annals.org on 30 April 2019.

The term chylomicronemia syndrome first appeared in the scientific literature in 1981 to describe clinical features attributed to marked elevations in plasma triglyceride levels in a small number of patients (1). Features included abdominal pain, acute pancreatitis, eruptive xanthomas, lipemia retinalis, mental confusion, memory loss, and flushing with minimal alcohol intake (1). Several of these characteristics resembled those chylomicronemia syndrome, with an emphasis on acute pancreatitis; and an approach to therapy.

#### METHODS

This update used PubMed Central. Search terms included chylomicronemia; chylomicronemia syndrome; chylomicronemia treatment; chylomicronemia genetics;

Ann Int Med. 2019;170:626-34.

# **Major Secondary Causes of Hypertriglyceridemia**

- Diabetes Mellitus, Insulin Resistance
- Obesity
- Alcohol
- Chronic Kidney Disease
- Nephrotic syndrome
- Hypothyroidism
- HIV
- Hepatocellular disease
- Inflammatory diseases

# **Medications that Cause of Hypertriglyceridemia**

- Oral estrogens
- Bile-acid sequestrants
- Antiretroviral regimens
  - especially for HIV disease
- Phenothiazine's 2nd-generation
- Nonselective beta-blockers
- Diuretics
- Glucocorticoids
- Immunosuppressants
- Tamoxifen
- Isotretinoin

# Hypertriglyceridemia

| Recommendations for Hypertriglyceridemia |      |                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| COR                                      | LOE  | Recommendations                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| I                                        | B-NR | In adults 20 years of age or older with moderate hypertriglyceridemia<br>(fasting or nonfasting triglycerides 175 to 499 mg/dL [1.9 to 5.6 mmol/L]),<br>clinicians should address and treat lifestyle factors (obesity and<br>metabolic syndrome), secondary factors (diabetes mellitus, chronic liver<br>or kidney disease and/or nephrotic syndrome, hypothyroidism), and<br>medications that increase triglycerides. |  |  |
| lla                                      | B-R  | In adults 40 to 75 years of age with moderate or severe<br>hypertriglyceridemia and ASCVD risk of 7.5% or higher, it is reasonable<br>to reevaluate ASCVD risk after lifestyle and secondary factors are<br>addressed and to consider a persistently elevated triglyceride level as a<br>factor favoring initiation or intensification of statin therapy (see Section<br>4.4.2.).                                       |  |  |

2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/ APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology Foundation/ American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 2018;Nov 8:[Epub ahead of print]

#### **Cholesterol Guidelines – Top 10 Take Home Messages**

1. In all individuals, emphasize a heart-healthy lifestyle across the life course.

A healthy lifestyle reduces atherosclerotic cardiovascular disease (ASCVD) risk at all ages. In younger individuals, healthy lifestyle can reduce development of risk factors and is the foundation of ASCVD risk reduction.

In young adults 20 to 39 years of age, an assessment of lifetime risk facilitates the clinician–patient risk discussion (see No. 6) and emphasizes intensive lifestyle efforts. In all age groups, lifestyle therapy is the primary intervention for metabolic syndrome.

2. In patients with clinical ASCVD, reduce low-density lipoprotein cholesterol (LDL-C) with high-intensity statin therapy or maximally tolerated statin therapy.

The more LDL-C is reduced on statin therapy, the greater will be subsequent risk reduction.

Use a maximally tolerated statin to lower LDL-C levels by  $\geq$ 50%.

3. In very high-risk ASCVD, use an LDL-C threshold of 70 mg/dL to consider addition of nonstatins to statin therapy.

- Very high risk includes a history of multiple major ASCVD events or 1 major ASCVD event and multiple high-risk conditions.
- In very high-risk ASCVD patients, it is reasonable to add ezetimibe to maximally tolerated statin therapy when the LDL-C level remains ≥70 mg/dL.
- In patients at very high risk whose LDL-C level remains ≥70 mg/dL on maximally tolerated statin and ezetimibe therapy, adding a PCSK9 inhibitor is reasonable, although the long-term safety (>3 years) is uncertain and costeffectiveness is low at mid-2018 list prices.

4. In patients with severe primary hypercholesterolemia (LDL-C level ≥190 mg/dL) without calculating 10-year ASCVD risk, begin high-intensity statin therapy without calculating 10-year ASCVD risk.

- If the LDL-C level remains ≥100 mg/dL, adding ezetimibe is reasonable
- If the LDL-C level on statin plus ezetimibe remains ≥100 mg/dL & the patient has multiple factors that increase subsequent risk of ASCVD events, PCSK9 inhibitor may be considered.

 In patients 40 to 75 years of age with diabetes mellitus and LDL-C ≥70 mg/dL, start moderate-intensity statin therapy without calculating 10-year ASCVD risk.

In patients with diabetes mellitus at higher risk, especially those with multiple risk factors or those 50 to 75 years of age, it is reasonable to use a high-intensity statin to reduce the LDL-C level by  $\geq$ 50%.

6. In adults 40 to 75 years of age evaluated for primary ASCVD prevention, have a clinician-patient risk discussion before starting statin therapy.

Risk discussion should include a review of

- major risk factors (eg, cigarette smoking, elevated blood pressure, LDL-C, hemoglobin A1C [if indicated], and calculated 10-year risk of ASCVD);
- the presence of risk-enhancing factors (see No. 8);
- the potential benefits of lifestyle and statin therapies;
- the potential for adverse effects and drug–drug interactions;
- the consideration of costs of statin therapy; and
- the patient preferences & values in shared decision-making.

 In adults 40 to 75 years of age without diabetes mellitus and with LDL-C levels ≥70 mg/dL, at a 10-year ASCVD risk of ≥7.5%, start a moderate-intensity statin if a discussion of treatment options favors statin therapy.

Risk-enhancing factors favor statin therapy (see No. 8).

If risk status is uncertain, consider using coronary artery calcium (CAC) to improve specificity (see No. 9). If statins are indicated, reduce LDL-C levels by  $\geq$ 30%, and if 10-year risk is  $\geq$ 20%, reduce LDL-C levels by  $\geq$ 50%.

 In adults 40 to 75 years of age without diabetes mellitus and 10-year risk of 7.5% to 19.9% (intermediate risk), riskenhancing factors favor initiation of statin therapy (see No. 7).

Risk-enhancing factors include

- family history of premature ASCVD;
- persistently elevated LDL-C levels ≥160 mg/dL;
- metabolic syndrome;
- chronic kidney disease;
- history of preeclampsia or premature menopause (age <40 yrs);</li>
- chronic inflammatory disorders (eg, rheumatoid arthritis, psoriasis, or chronic HIV);
- high-risk ethnic groups (eg, South Asian);
- persistent elevations of triglycerides ≥175 mg/dL

# 8. In adults 40 to 75 years of age without diabetes mellitus and 10-year risk of 7.5% to 19.9% (intermediate risk), risk-enhancing factors favor initiation of statin therapy (see No. 7).

Risk-enhancing factors include family history of premature ASCVD; persistently elevated LDL-C levels ≥160 mg/dL; metabolic syndrome; chronic kidney disease; history of preeclampsia or premature menopause (age <40 years); chronic inflammatory disorders (eg, rheumatoid arthritis, psoriasis, or chronic HIV); high-risk ethnic groups (eg, South Asian); persistent elevations of triglycerides ≥175 mg/dL; and, if measured in selected individuals

- apolipoprotein B ≥130 mg/dL;
- high-sensitivity C-reactive protein ≥2.0 mg/L;
- ankle-brachial index <0.9 and  $Lp(a) \ge 50 \text{ mg/dL}$ , especially at higher values of Lp(a).

Risk-enhancing factors may favor statin therapy in patients at 10-year risk of 5–7.5% (borderline risk)

9. In adults 40 to 75 years of age without diabetes mellitus and with LDL-C levels ≥70 mg/dL – 189 mg/dL, at a 10-year ASCVD risk of ≥7.5% to 19.9%, if a decision about statin therapy is uncertain, consider measuring CAC.

- If CAC is zero, treatment with statin therapy may be withheld or delayed, except in cigarette smokers, those with diabetes mellitus, and those with a strong family history of premature ASCVD.
- A CAC score of 1 to 99 favors statin therapy, especially in those ≥55 years of age.
- For any patient, if the CAC score is ≥100 Agatston units or ≥75th percentile, statin therapy is indicated unless otherwise deferred by the outcome of clinicianpatient risk discussion.

10. Assess adherence and percentage response to LDL-C– lowering medications and lifestyle changes with repeat lipid measurement 4 to 12 weeks after statin initiation or dose adjustment, repeated every 3 to 12 months as needed.

- Define responses to lifestyle and statin therapy by percentage reductions in LDL-C levels compared with baseline.
- In ASCVD patients at very high-risk, triggers for adding nonstatin drug therapy are defined by threshold LDL-C levels ≥70 mg/dL (≥1.8 mmol/L) on maximal statin therapy (see No. 3).

## Residual Cardiovascular Risk in Statin-Treated Patients with Elevated Triglycerides: Now We Can REDUCE-IT

#### Deepak L. Bhatt, MD, MPH

Executive Director of Interventional Cardiovascular Programs, Brigham and Women's Hospital Heart and Vascular Center Professor of Medicine, Harvard Medical School



BRIGHAM AND WOMEN'S HOSPITAL

Heart & Vascular Center



### **Disclosures**



Dr. Deepak L. Bhatt discloses the following relationships - Advisory Board: Cardax, Elsevier Practice Update Cardiology, Medscape Cardiology, PhaseBio, Regado Biosciences; Board of Directors: Boston VA Research Institute, Society of Cardiovascular Patient Care, TobeSoft; Chair: American Heart Association Quality Oversight Committee; Data Monitoring Committees: Baim Institute for Clinical Research (formerly Harvard Clinical Research Institute, for the PORTICO trial, funded by St. Jude Medical, now Abbott), Cleveland Clinic (including for the ExCEED trial, funded by Edwards), Duke Clinical Research Institute, Mayo Clinic, Mount Sinai School of Medicine (for the ENVISAGE trial, funded by Daiichi Sankyo), Population Health Research Institute; Honoraria: American College of Cardiology (Senior Associate Editor, Clinical Trials and News, ACC.org; Vice-Chair, ACC Accreditation Committee), Baim Institute for Clinical Research (formerly Harvard Clinical Research Institute; RE-DUAL PCI clinical trial steering committee funded by Boehringer Ingelheim), Belvoir Publications (Editor in Chief, Harvard Heart Letter), Duke Clinical Research Institute (clinical trial steering committees), HMP Global (Editor in Chief, Journal of Invasive Cardiology), Journal of the American College of Cardiology (Guest Editor; Associate Editor), Medtelligence/ReachMD (CME steering committees), Population Health Research Institute (for the COMPASS operations committee, publications committee, steering committee, and USA national co-leader, funded by Bayer), Slack Publications (Chief Medical Editor, Cardiology Today's Intervention), Society of Cardiovascular Patient Care (Secretary/Treasurer), WebMD (CME steering committees); Other: Clinical Cardiology (Deputy Editor), NCDR-ACTION Registry Steering Committee (Chair), VA CART Research and Publications Committee (Chair); Research Funding: Abbott, Amarin, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, Chiesi, Eisai, Ethicon, Forest Laboratories, Idorsia, Ironwood, Ischemix, Lilly, Medtronic, PhaseBio, Pfizer, Regeneron, Roche, Sanofi Aventis, Synaptic, The Medicines Company; Royalties: Elsevier (Editor, Cardiovascular Intervention: A Companion to Braunwald's Heart Disease); Site Co-Investigator: Biotronik, Boston Scientific, St. Jude Medical (now Abbott), Svelte; Trustee: American College of Cardiology: Unfunded Research: FlowCo, Fractyl, Merck, Novo Nordisk, PLx Pharma, Takeda.

#### This presentation includes off-label and/or investigational uses of drugs.

**REDUCE-IT** was sponsored by Amarin Pharma, Inc.

### **Triglycerides a Causal Risk Factor?**



Europear Heart Iourna

#### Triglyceride-rich lipoproteins ApoC3, ApoA5, AngPTL4 *Causal risk*

factors?

Adapted with permission from Libby P. Triglycerides on the rise: should we swap seats on the seesaw? *Eur Heart J.* 2015;36:774-

#### Low Dose Omega-3 Mixtures Show No Significant Cardiovascular Benefit



Adapted with permission<sup>\*</sup> from Aung T, Halsey J, Kromhout D, et al. Associations of omega-3 fatty acid supplement use with cardiovascular disease risks: Meta-analysis of 10 trials involving 77917 individuals. *JAMA Cardiol.* 2018;3:225-234. [\*https://creativecommons.org/licenses.org/by-nc/4.0/]



ORIGINAL ARTICLE

## Effects of n-3 Fatty Acid Supplements in Diabetes Mellitus

The ASCEND Study Collaborative Group\*

#### ASCEND

#### A randomized trial of omega-3 fatty acids (fish oil) versus placebo for primary cardiovascular prevention in 15,480 patients with diabetes

Jane Armitage and Louise Bowman on behalf of the ASCEND Study Collaborative Group

Funded by British Heart Foundation, UK Medical Research Council and support from Abbott, Bayer, Mylan and Solvay Designed, conducted and analysed independently of the funders University of Oxford is the trial sponsor



ESC Congress



### **ASCEND** trial design



- Eligibility:Age  $\geq$  40 years; any DIABETES;no prior cardiovascular disease
- Participants: 15,480 UK patients
- **Randomization:** Omega-3 fatty acids 1 g capsule/day vs placebo (and aspirin 100 mg daily vs placebo)
- **Follow-up:** Mean 7.4 years; >99% complete for morbidity & mortality
- Adherence: Average adherence to omega-3 capsules 77%

Streamlined methods: mail-based (questionnaires & study treatment); no study clinics; 2x2 factorial design; highly cost-effective

ASCEND Study Collaborative Group. Trials 2016;17:286 / Am Heart J 2018;198:135-144



20



## Effect of omega-3 FA supplements on serious vascular events



ORIGINAL ARTICLE

# Marine n–3 Fatty Acids and Prevention of Cardiovascular Disease and Cancer

JoAnn E. Manson, M.D., Dr.P.H., Nancy R. Cook, Sc.D., I-Min Lee, M.B., B.S., Sc.D., William Christen, Sc.D., Shari S. Bassuk, Sc.D., Samia Mora, M.D., M.H.S., Heike Gibson, Ph.D., Christine M. Albert, M.D., M.P.H., David Gordon, M.A.T., Trisha Copeland, M.S., R.D., Denise D'Agostino, B.S., Georgina Friedenberg, M.P.H., Claire Ridge, M.P.H., Vadim Bubes, Ph.D., Edward L. Giovannucci, M.D., Sc.D., Walter C. Willett, M.D., Dr.P.H., and Julie E. Buring, Sc.D., for the VITAL Research Group\*

#### The VITamin D and OmegaA-3 TriaL (VITAL): Design



Median Treatment Period = 5.3 years.

**5106 African Americans.** 

Blood collection in ~16, 953 at baseline, follow-up bloods in ~6000.

Adapted from: Manson JE, Bassuk SS, Lee I-M, et al. Cont Clinical Trials, 2011.

#### Cumulative Incidence Rates of Major CVD Events by Year of Follow-up: Omega-3s vs. Placebo



Manson JE, Cook NR, Lee I-M, et al. NEJM. 2018

#### JELIS Suggests CV Risk Reduction with EPA in Japanese Hypercholesterolemic Patients



\*1.8 g/day

Adapted with permission from Yokoyama M, Origasa H, Matsuzaki M, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. *Lancet.* 2007;369:1090-1098.

## EPA and DHA Have Differing Effects on Cellular Membranes



Reproduced with permission\* from Sherratt SCR, Mason RP. Eicosapentaenoic acid and docosahexaenoic acid have distinct membrane locations and lipid interactions as determined by X-ray diffraction. *Chem Phys Lipids*. 2018;212:73-79. [\*https://creativecommons.org/licenses.org/by-nc/4.0/]

### **REDUCE-IT** Design





\* Due to the variability of triglycerides, a 10% allowance existed in the initial protocol, which permitted patients to be enrolled with qualifying triglycerides ≥135 mg/dL. Protocol amendment 1 (May 2013) changed the lower limit of acceptable triglycerides from 150 mg/dL to 200 mg/dL, with no variability allowance.

<sup>+</sup> Median trial follow-up duration was 4.9 years (minimum 0.0, maximum 6.2 years).

Adapted with permission<sup>‡</sup> from Bhatt DL, Steg PG, Brinton EA, et al; on behalf of the REDUCE-IT Investigators. Rationale and design of REDUCE-IT: Reduction of Cardiovascular Events with Icosapent Ethyl–Intervention Trial. *Clin Cardiol.* 2017;40:138-148. REDUCE-IT ClinicalTrials.gov number, NCT01492361. [\*https://creativecommons.org/licenses/by-nc/4.0/]

#### Key Inclusion Criteria – REDUCE-IT



- Age ≥45 years with established CVD (Secondary Prevention Cohort) or ≥50 years with diabetes with ≥1 additional risk factor for CVD (Primary Prevention Cohort)
- 2. Fasting TG levels  $\geq$ 150 mg/dL and <500 mg/dL\*
- LDL-C >40 mg/dL and ≤100 mg/dL and on stable statin therapy (± ezetimibe) for ≥4 weeks prior to qualifying measurements for randomization

\*Due to the variability of triglycerides, a 10% allowance existing in the initial protocol, which permitted patients to be enrolled with qualifying triglycerides ≥135 mg/dL. protocol amendment 1 (May 2013) changed the lower limit of acceptable triglycerides from 150 mg/dL to 200 mg/dL, with no variability allowance.

Adapted with permission<sup>+</sup> from: Bhatt DL, Steg PG, Brinton EA, et al; on behalf of the REDUCE-IT Investigators. Rationale and design of REDUCE-IT: Reduction of Cardiovascular Events with Icosapent Ethyl–Intervention Trial. *Clin Cardiol*. 2017;40:138-148. [\*https://creativecommons.org/licenses/by-nc/4.0/]

#### **Key Exclusion Criteria**



- 1. Severe (NYHA class IV) heart failure
- 2. Severe liver disease
- 3. History of pancreatitis
- 4. Hypersensitivity to fish and/or shellfish

Adapted with permission<sup>+</sup> from: Bhatt DL, Steg PG, Brinton EA, et al; on behalf of the REDUCE-IT Investigators. Rationale and design of REDUCE-IT: Reduction of Cardiovascular Events with Icosapent Ethyl–Intervention Trial. *Clin Cardiol*. 2017;40:138-148. [\*https://creativecommons.org/licenses/by-nc/4.0/]

### **CONSORT** Diagram



Bhatt DL, Steg PG, Miller M, et al. N Engl J Med. 2019; 380:11-22.

Median trial follow up duration was 4.9 years.

reduce-it

### **Key Baseline Characteristics**



|                                       | Icosapent Ethyl<br>(N=4089) | Placebo<br>(N=4090)   |
|---------------------------------------|-----------------------------|-----------------------|
| Age (years), Median (Q1-Q3)           | 64.0 (57.0 - 69.0)          | 64.0 (57.0 - 69.0)    |
| Female, n (%)                         | 1162 (28.4%)                | 1195 (29.2%)          |
| Non-White, n (%)                      | 398 (9.7%)                  | 401 (9.8%)            |
| Westernized Region, n (%)             | 2906 (71.1%)                | 2905 (71.0%)          |
| CV Risk Category, n (%)               |                             |                       |
| Secondary Prevention Cohort           | 2892 (70.7%)                | 2893 (70.7%)          |
| Primary Prevention Cohort             | 1197 (29.3%)                | 1197 (29.3%)          |
| Ezetimibe Use, n (%)                  | 262 (6.4%)                  | 262 (6.4%)            |
| Statin Intensity, n (%)               |                             |                       |
| Low                                   | 254 (6.2%)                  | 267 (6.5%)            |
| Moderate                              | 2533 (61.9%)                | 2575 (63.0%)          |
| High                                  | 1290 (31.5%)                | 1226 (30.0%)          |
| Type 2 Diabetes, n (%)                | 2367 (57.9%)                | 2363 (57.8%)          |
| Triglycerides (mg/dL), Median (Q1-Q3) | 216.5 (176.5 - 272.0)       | 216.0 (175.5 - 274.0) |
| HDL-C (mg/dL), Median (Q1-Q3)         | 40.0 (34.5 - 46.0)          | 40.0 (35.0 - 46.0)    |
| LDL-C (mg/dL), Median (Q1-Q3)         | 74.0 (61.5 - 88.0)          | 76.0 (63.0 - 89.0)    |
| Triglycerides Category                |                             |                       |
| <150 mg/dL                            | 412 (10.1%)                 | 429 (10.5%)           |
| 150 to <200 mg/dL                     | 1193 (29.2%)                | 1191 (29.1%)          |
| ≥200 mg/dL                            | 2481 (60.7%)                | 2469 (60.4%)          |

## **Key Medical Therapy**



|                           | Icosapent Ethyl<br>(N=4089) | Placebo<br>(N=4090) |
|---------------------------|-----------------------------|---------------------|
| Antiplatelet              | 3257 (79.7%)                | 3236 (79.1%)        |
| One Antiplatelet          | 2416 (59.1%)                | 2408 (58.9%)        |
| Two or More Antiplatelets | 841 (20.6%)                 | 828 (20.2%)         |
| Anticoagulant             | 385 (9.4%)                  | 390 (9.5%)          |
| ACEi or ARB               | 3164 (77.4%)                | 3176 (77.7%)        |
| Beta Blocker              | 2902 (71.0%)                | 2880 (70.4%)        |
| Statin                    | 4077 (99.7%)                | 4068 (99.5%)        |

# Effects on Biomarkers from Baseline to Year 1



|                       | Icosapei<br>(N=4<br>Med | 089)   | Placebo<br>(N=4090)<br>Median |        | Median Between Group Difference<br>at Year 1 |                              | fference            |
|-----------------------|-------------------------|--------|-------------------------------|--------|----------------------------------------------|------------------------------|---------------------|
| Biomarker*            | Baseline                | Year 1 | Baseline                      | Year 1 | Absolute<br>Change from<br>Baseline          | % Change<br>from<br>Baseline | % Change<br>P-value |
| Triglycerides (mg/dL) | 216.5                   | 175.0  | 216.0                         | 221.0  | -44.5                                        | -19.7                        | <0.0001             |
| Non-HDL-C (mg/dL)     | 118.0                   | 113.0  | 118.5                         | 130.0  | -15.5                                        | -13.1                        | <0.0001             |
| LDL-C (mg/dL)         | 74.0                    | 77.0   | 76.0                          | 84.0   | -5.0                                         | -6.6                         | <0.0001             |
| HDL-C (mg/dL)         | 40.0                    | 39.0   | 40.0                          | 42.0   | -2.5                                         | -6.3                         | <0.0001             |
| Apo B (mg/dL)         | 82.0                    | 80.0   | 83.0                          | 89.0   | -8.0                                         | -9.7                         | <0.0001             |
| hsCRP (mg/L)          | 2.2                     | 1.8    | 2.1                           | 2.8    | -0.9                                         | -39.9                        | <0.0001             |
| Log hsCRP (mg/L)      | 0.8                     | 0.6    | 0.8                           | 1.0    | -0.4                                         | -22.5                        | <0.0001             |
| EPA (µg/mL)           | 26.1                    | 144.0  | 26.1                          | 23.3   | +114.9                                       | +358.8                       | <0.0001             |

\*Apo B and hsCRP were measured at Year 2.

#### **Primary End Point:** CV Death, MI, Stroke, Coronary Revasc, Unstable Angina



Hazard Ratio, 0.75 (95% Cl, 0.68–0.83) RRR = 24.8% ARR = 4.8% NNT = 21 (95% Cl, 15–33) P=0.0000001

(ce-it

Bhatt DL, Steg PG, Miller M, et al. N Engl J Med. 2019. Bhatt DL. AHA 2018, Chicago.

#### Key Secondary End Point: CV Death, MI, Stroke





Bhatt DL, Steg PG, Miller M, et al. N Engl J Med. 2019. Bhatt DL. AHA 2018, Chicago.

#### **Primary End Point in Subgroups**



| End Point/Subgroup                                                                                                 | Hazard Ratio (95% CI) | Icosapent Ethyl                                          | Placebo                                                  | HR (95% CI)                                              | Int P |
|--------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-------|
|                                                                                                                    |                       | n/N (%)                                                  | n/N (%)                                                  |                                                          |       |
| rimary Composite End Point (ITT)                                                                                   |                       | 705/4089 (17.2%)                                         | 901/4090 (22.0%)                                         | 0.75 (0.68-0.83)                                         |       |
| ubgroup                                                                                                            |                       |                                                          |                                                          |                                                          |       |
| Risk Category<br>Secondary Prevention Cohort<br>Primary Prevention Cohort                                          | ━₌                    | 559/2892 (19.3%)<br>146/1197 (12.2%)                     | 738/2893 (25.5%)<br>163/1197 (13.6%)                     | 0.73 (0.65–0.81)<br>0.88 (0.70–1.10)                     | 0.14  |
| Region<br>Western<br>Eastern<br>Asia Pacific                                                                       |                       | 551/2906 (19.0%)<br>143/1053 (13.6%)<br>11/130 (8.5%)    | 713/2905 (24.5%)<br>167/1053 (15.9%)<br>21/132 (15.9%)   | 0.74 (0.66–0.83)<br>0.84 (0.67–1.05)<br>0.49 (0.24–1.02) | 0.30  |
| Ezetimibe Use<br>No<br>Yes                                                                                         |                       | 649/3827 (17.0%)<br>56/262 (21.4%)                       | 834/3828 (21.8%)<br>67/262 (25.6%)                       | 0.75 (0.67–0.83)<br>0.82 (0.57–1.16)                     | 0.64  |
| Sex<br>Male<br>Female                                                                                              | <b>-</b>              | 551/2927 (18.8%)<br>154/1162 (13.3%)                     | 715/2895 (24.7%)<br>186/1195 (15.6%)                     | 0.73 (0.65–0.82)<br>0.82 (0.66–1.01)                     | 0.33  |
| White vs Non-White<br>White<br>Non-White                                                                           | <b>_</b>              | 646/3691 (17.5%)<br>59/398 (14.8%)                       | 812/3688 (22.0%)<br>89/401 (22.2%)                       | 0.77 (0.69–0.85)<br>0.60 (0.43–0.83)                     | 0.1   |
| Age Group<br>⊲65 Years<br>≳65 Years                                                                                | ÷_                    | 322/2232 (14.4%)<br>383/1857 (20.6%)                     | 460/2184 (21.1%)<br>441/1906 (23.1%)                     | 0.65 (0.56-0.75)<br>0.87 (0.76-1.00)                     | 0.00  |
| US vs Nan-US<br>US<br>Nan-US                                                                                       | -                     | 281/1548 (18.2%)<br>424/2541 (16.7%)                     | 394/1598 (24.7%)<br>507/2492 (20.3%)                     | 0.69 (0.59–0.80)<br>0.80 (0.71–0.91)                     | 0.1   |
| Baseline Diabetes<br>Diabetes<br>No Diabetes                                                                       | *                     | 433/2394 (18.1%)<br>272/1695 (16.0%)                     | 536/2393 (22.4%)<br>365/1694 (21.5%)                     | 0.77 (0.68–0.87)<br>0.73 (0.62–0.85)                     | 0.5   |
| Baseline eGFR<br><60 mL/min/1.73m <sup>2</sup><br>60~50 mL/min/1.73m <sup>2</sup><br>≽90 mL/min/1.73m <sup>2</sup> | <b></b>               | 197/905 (21.8%)<br>380/2217 (17.1%)<br>128/963 (13.3%)   | 263/911 (28.9%)<br>468/2238 (20.9%)<br>170/939 (18.1%)   | 0.71 (0.59–0.85)<br>0.80 (0.70–0.92)<br>0.70 (0.56–0.89) | 0.4   |
| Baseline Triglycerides ≥200 vs <200 mg/dL<br>Triglycerides ≥200 mg/dL<br>Triglycerides <200 mg/dL                  | <b>-</b>              | 430/2481 (17.3%)<br>275/1605 (17.1%)                     | 559/2469 (22.6%)<br>342/1620 (21.1%)                     | 0.73 (0.64–0.83)<br>0.79 (0.67–0.93)                     | 0.4   |
| Baseline Triglycerides ≥150 vs <150 mg/dL<br>Triglycerides ≥150 mg/dL<br>Triglycerides <150 mg/dL                  |                       | 640/3674 (17.4%)<br>65/412 (15.8%)                       | 811/3660 (22.2%)<br>90/429 (21.0%)                       | 0.75 (0.68–0.83)<br>0.79 (0.57–1.09)                     | 0.8   |
| Baseline Triglycerides ≳200 and HDL-C ≲35 mg/dL<br>Yes<br>No                                                       |                       | 149/823 (18.1%)<br>554/3258 (17.0%)                      | 214/794 (27.0%)<br>687/3293 (20.9%)                      | 0.62 (0.51–0.77)<br>0.79 (0.71–0.88)                     | 0.0   |
| Baseline Statin Intensity<br>High<br>Moderate<br>Low                                                               | -=                    | 232/1290 (18.0%)<br>424/2533 (16.7%)<br>48/254 (18.9%)   | 310/1226 (25.3%)<br>543/2575 (21.1%)<br>45/267 (16.9%)   | 0.69 (0.58–0.82)<br>0.76 (0.67–0.86)<br>1.12 (0.74–1.69) | 0.1   |
| Baseline LDL-C (Derived) by Tertiles<br>≲67 mg/dL<br>>67-≤84 mg/dL<br>>84 mg/dL                                    | 圭                     | 244/1481 (16.5%)<br>248/1347 (18.4%)<br>213/1258 (16.9%) | 302/1386 (21.8%)<br>307/1364 (22.5%)<br>292/1339 (21.8%) | 0.72 (0.61–0.85)<br>0.81 (0.68–0.96)<br>0.74 (0.62–0.89) | 0.6   |
| Baseline hsCRP ≤2 vs >2 mg/L<br>≤2 mg/L<br>>2 mg/L                                                                 |                       | 288/1919 (15.0%)<br>417/2167 (19.2%)                     | 407/1942 (21.0%)<br>494/2147 (23.0%)                     | 0.68 (0.58–0.79)<br>0.81 (0.71–0.93)                     | 0.0   |
| Г<br>0.2                                                                                                           | 2 0.6 1.0 1.4 1.4     | 8                                                        |                                                          |                                                          |       |

## Key Secondary End Point in Subgroups Generation

|                                                                   | End Point/Subgroup                                                                                                              | Hazard Ratio (95% CI)    | Icosapent Ethyl Plac                                                                |                                                      |                                      |             |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------|-------------|
|                                                                   | Key Secondary Composite Endpoint (ITT)<br>Subgroup<br>Risk Category<br>Secondary Prevention Cohort<br>Primary Prevention Cohort |                          | 459/4089 (11.2%) 606/4090<br>361/2802 (12.5%) 480/2893<br>98/1197 (8.2%) 117/1197   | (14.8%) 0.74 (0.65–0.83)<br>(16.9%) 0.72 (0.63–0.82) |                                      |             |
|                                                                   |                                                                                                                                 |                          |                                                                                     |                                                      |                                      |             |
| Subgroup                                                          |                                                                                                                                 | Hazard Ratio<br>(95% Cl) | Icosapent Ethyl<br>n/N (%)                                                          | Placebo<br>n/N (%)                                   | HR (95% CI)                          | Int<br>P Va |
| Risk Category<br>Secondary Prevention C<br>Primary Prevention Coh |                                                                                                                                 | ╺                        | 361/2892 (12.5%)<br>98/1197 (8.2%)                                                  | 489/2893 (16.9%)<br>117/1197 (9.8%)                  | 0.72 (0.63–0.82)<br>0.81 (0.62–1.06) | 0.41        |
|                                                                   | Diabetes<br>No Diabetes                                                                                                         |                          | 286/2394 (11.9%) 391/2393<br>173/1695 (10.2%) 215/1694                              |                                                      |                                      |             |
|                                                                   | Baseline eGFR<br><80 mL/min/1.73m <sup>2</sup><br>60≪90 mL/min/1.73m <sup>2</sup><br>≥30 mL/min/1.73m <sup>2</sup>              |                          | 152/905 (16.8%) 205/911<br>229/2217 (10.3%) 296/2238<br>78/963 (8.1%) 105/939       | (13.2%) 0.77 (0.64-0.91)                             |                                      |             |
|                                                                   | Baseline Triglycerides ≥200 vs <200 mg/dL<br>Triglycerides ≥200 mg/dL<br>Triglycerides <200 mg/dL                               |                          | 290/2481 (11.7%) 371/2469<br>169/1605 (10.5%) 235/1620                              |                                                      |                                      |             |
|                                                                   | Baseline Triglycerides ≥150 vs <150 mg/dL<br>Triglycerides ≥150 mg/dL<br>Triglycerides <150 mg/dL                               |                          | 421/3674 (11.5%) 546/3660<br>38/412 (9.2%) 60/429 (                                 |                                                      |                                      |             |
|                                                                   | Baseline Triglycerides ≥200 and HDL-C ≤35 mg/dL<br>Yas<br>No                                                                    |                          | 101/823 (12.3%) 136/794<br>356/3258 (10.9%) 470/3293                                |                                                      |                                      |             |
|                                                                   | Baseline Statin Intensity<br>High<br>Moderate<br>Low                                                                            |                          | 151/1290 (11.7%) 210/1226<br>270/2533 (10.7%) 361/2575<br>37/254 (14.6%) 32/267 (   | (14.0%) 0.74 (0.63-0.87)                             |                                      |             |
|                                                                   | Baseline LDL-C (Derived) by Tertiles<br>s67 mg/dL<br>>67-s84 mg/dL<br>>84 mg/dL                                                 | 主                        | 157/1481 (10.6%) 198/1386<br>157/1347 (11.7%) 208/1364<br>145/1288 (11.5%) 202/1339 | (15.2%) 0.75 (0.61-0.93)                             |                                      |             |
|                                                                   | Baseline hsCRP ≤2 vs >2 mg/L<br>≤2 mg/L<br>>2 mg/L                                                                              | =                        | 183/1919 (9.5%) 245/1942<br>276/2167 (12.7%) 361/2147                               |                                                      |                                      |             |
|                                                                   | 0                                                                                                                               |                          | 1.4 1.8<br>o Better                                                                 |                                                      |                                      |             |

## Key Secondary End Point in Subgroups Generation

|                   | End Point/Subgroup                                                             | Hazard Ratio (95% CI)        | Icosapent Ethyl                                      | Placebo                                                | HR (95% CI)* Int P Val                                           |                     |              |
|-------------------|--------------------------------------------------------------------------------|------------------------------|------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------|---------------------|--------------|
|                   |                                                                                |                              | n/N (%)                                              | n/N (%)                                                |                                                                  |                     |              |
|                   | Key Secondary Composite Endpoint (ITT)                                         |                              | 459/4089 (11.2%)                                     | 606/4090 (14.8%)                                       | 0.74 (0.65-0.83)                                                 |                     |              |
|                   | Subgroup                                                                       |                              |                                                      |                                                        |                                                                  |                     |              |
|                   | Risk Category<br>Secondary Prevention Cohort<br>Primary Prevention Cohort      |                              | 361/2892 (12.5%)<br>98/1197 (8.2%)                   | 489/2893 (16.9%)<br>117/1197 (9.8%)                    | 0.41<br>0.72 (0.63–0.82)<br>0.81 (0.62–1.06)                     |                     |              |
|                   | Region<br>Western<br>Eastern<br>Asia Pacific                                   |                              |                                                      | 473/2905 (16.3%)<br>117/1053 (11.1%)<br>16/132 (12.1%) | 0.54<br>0.73 (0.64–0.84)<br>0.78 (0.59–1.02)<br>0.47 (0.20–1.10) |                     |              |
|                   | Ezetimibe Use<br>No<br>Yes                                                     |                              | 426/3827 (11.1%)<br>33/262 (12.6%)                   | 569/3828 (14.9%)<br>37/262 (14.1%)                     | 0.46<br>0.73 (0.64–0.82)<br>0.87 (0.54–1.39)                     |                     |              |
|                   | Sex<br>Male<br>Female                                                          |                              | 353/2927 (12.1%)<br>106/1162 (9.1%)                  | 474/2895 (16.4%)<br>132/1195 (11.0%)                   | 0.44<br>0.72 (0.62–0.82)<br>0.80 (0.62–1.03)                     |                     |              |
|                   | White vs Non-White<br>White<br>Non-White                                       |                              | 418/3691 (11.3%)<br>41/398 (10.3%)                   | 538/3688 (14.6%)<br>68/401 (17.0%)                     | 0.13<br>0.76 (0.67–0.86)<br>0.55 (0.38–0.82)                     |                     |              |
|                   | Age Group<br>⊰65 Years<br>≳65 Years                                            |                              |                                                      | 290/2184 (13.3%)<br>316/1906 (16.6%)                   | 0.06<br>0.65 (0.54–0.78)<br>0.82 (0.70–0.97)                     |                     |              |
|                   | US vs Non-US<br>US<br>Non-US                                                   |                              | 187/1548 (12.1%)<br>272/2541 (10.7%)                 | 266/1598 (16.6%)<br>340/2492 (13.6%)                   | 0.38<br>0.69 (0.57–0.83)<br>0.77 (0.66–0.91)                     |                     |              |
|                   | Baseline Diabetes<br>Diabetes<br>No Diabetes                                   |                              |                                                      | 391/2393 (16.3%)<br>215/1694 (12.7%)                   | 0.29<br>0.70 (0.60–0.81)<br>0.80 (0.65–0.98)                     |                     |              |
|                   | Baseline «GFR<br><60 mL/min/1.73m²<br>80~90 mL/min/1.73m²<br>980 mL/min/1.73m² |                              | 152/905 (16.8%)<br>229/2217 (10.3%)<br>78/983 (8.1%) | 205/911 (22.5%)<br>296/2238 (13.2%)<br>105/939 (11.2%) | 0.77<br>0.71 (0.57–0.88)<br>0.77 (0.64–0.91)<br>0.70 (0.52–0.94) |                     |              |
| Subgroup          |                                                                                | Hazard Ratio<br>(95% CI)     | Icosapent Ethy<br>n/N (%)                            | /I                                                     | Placebo<br>n/N (%)                                               | HR (95% CI)         | Int<br>P Val |
| Baseline Diabetes |                                                                                |                              |                                                      |                                                        |                                                                  |                     | 0.29         |
| Diabetes          | -                                                                              |                              | 286/2394 (11.9%                                      |                                                        | 1/2393 (16.3%                                                    | , , , ,             |              |
| No Diabetes       |                                                                                |                              | 173/1695 (10.2%                                      | 6) 21                                                  | 5/1694 (12.7%                                                    | 6) 0.80 (0.65–0.98) |              |
|                   | >84 mg/dL<br>Baseline hsCRP ≲2 vs >2 mg/L                                      |                              | 145/1258 (11.5%)                                     | 202/1339 (15.1%)                                       | 0.74 (0.60–0.91)                                                 |                     |              |
|                   | ≤2 mg/L<br>>2 mg/L                                                             |                              | 183/1919 (9.5%)<br>276/2167 (12.7%)                  |                                                        | 0.73 (0.61–0.89)<br>0.73 (0.63–0.86)                             |                     |              |
|                   |                                                                                |                              | 1.4 1.8                                              |                                                        |                                                                  |                     |              |
|                   |                                                                                | Icosapent Ethyl Better Place | oo Better                                            |                                                        |                                                                  |                     |              |

## Key Secondary End Point in Subgroups Generation

| End Point/Subgroup                                                                                                               | Hazard Ratio (95% CI) | Icosapent Ethyl                                      | Placebo                                                | HR (95% CI)*                                             | Int P Val |  |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|-----------|--|
|                                                                                                                                  |                       | n/N (%)                                              | n/N (%)                                                |                                                          |           |  |
| Key Secondary Composite Endpoint (ITT)                                                                                           |                       | 459/4089 (11.2%)                                     | 606/4090 (14.8%)                                       | 0.74 (0.65-0.83)                                         |           |  |
| Subgroup                                                                                                                         |                       |                                                      |                                                        |                                                          |           |  |
| Risk Category<br>Secondary Prevention Cohort<br>Primary Prevention Cohort                                                        |                       | 361/2892 (12.5%)<br>98/1197 (8.2%)                   | 489/2893 (16.9%)<br>117/1197 (9.8%)                    | 0.72 (0.63–0.82)<br>0.81 (0.62–1.06)                     | 0.41      |  |
| Region<br>Western<br>Eastern<br>Asia Pacific                                                                                     |                       | 358/2906 (12.3%)<br>93/1053 (8.8%)<br>8/130 (6.2%)   | 473/2905 (16.3%)<br>117/1053 (11.1%)<br>16/132 (12.1%) | 0.73 (0.64–0.84)<br>0.78 (0.59–1.02)<br>0.47 (0.20–1.10) | 0.54      |  |
| Ezetimibe Use<br>No<br>Yes                                                                                                       |                       | 426/3827 (11.1%)<br>33/262 (12.6%)                   | 569/3828 (14.9%)<br>37/262 (14.1%)                     | 0.73 (0.64–0.82)<br>0.87 (0.54–1.39)                     | 0.46      |  |
| Sex<br>Male<br>Female                                                                                                            |                       | 353/2927 (12.1%)<br>106/1162 (9.1%)                  | 474/2895 (16.4%)<br>132/1195 (11.0%)                   | 0.72 (0.62–0.82)<br>0.80 (0.62–1.03)                     | 0.44      |  |
| White vs: Non-White<br>White<br>Non-White                                                                                        |                       | 418/3691 (11.3%)<br>41/398 (10.3%)                   | 538/3688 (14.6%)<br>68/401 (17.0%)                     | 0.76 (0.67–0.86)<br>0.55 (0.38–0.82)                     | 0.13      |  |
| Age Group<br>⊲65 Years<br>≳65 Years                                                                                              |                       | 200/2232 (9.0%)<br>259/1857 (13.9%)                  | 290/2184 (13.3%)<br>316/1906 (16.6%)                   | 0.65 (0.54–0.78)<br>0.82 (0.70–0.97)                     | 0.06      |  |
| US vs Non-US<br>US<br>Non-US                                                                                                     |                       |                                                      | 266/1598 (16.6%)<br>340/2492 (13.6%)                   | 0.69 (0.57–0.83)<br>0.77 (0.66–0.91)                     | 0.38      |  |
| Baseline Diabetes<br>Diabetes<br>No Diabetes                                                                                     |                       |                                                      | 391/2393 (16.3%)<br>215/1694 (12.7%)                   | 0.70 (0.60–0.81)<br>0.80 (0.65–0.98)                     | 0.29      |  |
| Baseline eGFR<br><pre>&lt;60 mL/min/1.73m<sup>2</sup><br/>60~≤90 mL/min/1.73m<sup>2</sup><br/>≥90 mL/min/1.73m<sup>2</sup></pre> |                       | 152/905 (16.8%)<br>229/2217 (10.3%)<br>78/963 (8.1%) | 205/911 (22.5%)<br>296/2238 (13.2%)<br>105/939 (11.2%) | 0.71 (0.57–0.88)<br>0.77 (0.64–0.91)<br>0.70 (0.52–0.94) | 0.77      |  |
| Baseline Triglycerides ≥200 vs <200 mg/dL<br>Triglycerides ≥200 mg/dL<br>Triglycerides <200 mg/dL                                |                       |                                                      | 371/2469 (15.0%)<br>235/1620 (14.5%)                   | 0.75 (0.65–0.88)<br>0.71 (0.58–0.86)                     | 0.62      |  |
|                                                                                                                                  |                       |                                                      |                                                        |                                                          |           |  |

| Subgroup                                                                                          | Hazard Ratio<br>(95% CI) | Icosapent Ethyl<br>n/N (%)        | Placebo<br>n/N (%)                 | HR (95% CI)                          | Int<br>P Val |
|---------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------|------------------------------------|--------------------------------------|--------------|
| Baseline Triglycerides ≥150 vs <150 mg/dL<br>Triglycerides ≥150 mg/dL<br>Triglycerides <150 mg/dL | <b></b>                  | 421/3674 (11.5%)<br>38/412 (9.2%) | 546/3660 (14.9%)<br>60/429 (14.0%) | 0.74 (0.65–0.84)<br>0.66 (0.44–0.99) | 0.68         |

Icosapent Ethyl Better Placebo Better

## **Prespecified Hierarchical Testing**

| Endpoint                                                               | Hazard Ratio<br>(95% Cl) | Icosapent Ethyl  |                  | Hazard Ratio (95% CI)  | RRR         | P-value   |
|------------------------------------------------------------------------|--------------------------|------------------|------------------|------------------------|-------------|-----------|
|                                                                        | (95% CI)                 | n/N (%)          | n/N (%)          |                        |             |           |
| Primary Composite (ITT)                                                | -=-                      | 705/4089 (17.2%) | 901/4090 (22.0%) | 0.75 (0.68–0.83)       | 25%▼        | <0.001    |
| Key Secondary Composite (ITT)                                          | -=-                      | 459/4089 (11.2%) | 606/4090 (14.8%) | 0.74 (0.65–0.83)       | 26%▼        | <0.001    |
| Cardiovascular Death or<br>Nonfatal Myocardial Infarction              |                          | 392/4089 (9.6%)  | 507/4090 (12.4%) | 0.75 (0.66–0.86)       | 25%▼        | <0.001    |
| Fatal or Nonfatal Myocardial Infarction                                |                          | 250/4089 (6.1%)  | 355/4090 (8.7%)  | 0.69 (0.58–0.81)       | 31%▼        | <0.001    |
| Urgent or Emergent Revascularization                                   |                          | 216/4089 (5.3%)  | 321/4090 (7.8%)  | 0.65 (0.55–0.78)       | 35%▼        | <0.001    |
| Cardiovascular Death                                                   | <b></b>                  | 174/4089 (4.3%)  | 213/4090 (5.2%)  | 0.80 (0.66–0.98)       | 20%▼        | 0.03      |
| Hospitalization for Unstable Angina                                    | _ <b></b>                | 108/4089 (2.6%)  | 157/4090 (3.8%)  | 0.68 (0.53–0.87)       | 32%▼        | 0.002     |
| Fatal or Nonfatal Stroke                                               | <b></b>                  | 98/4089 (2.4%)   | 134/4090 (3.3%)  | 0.72 (0.55–0.93)       | 28%▼        | 0.01      |
| Total Mortality, Nonfatal Myocardial<br>Infarction, or Nonfatal Stroke |                          | 549/4089 (13.4%) | 690/4090 (16.9%) | 0.77 (0.69–0.86)       | 23%▼        | <0.001    |
| Total Mortality                                                        |                          | 274/4089 (6.7%)  | 310/4090 (7.6%)  | 0.87 (0.74–1.02)       | 13%▼        | 0.09      |
|                                                                        | 0.4 1.0                  | 1.4              |                  | RRR denotes re         | lative risk | reduction |
| Bhatt DL, AHA 2018, Chicago Icosapen                                   | t Ethyl Better Pla       | acebo Better     | Bhatt DI Sta     | ea PG Miller M et al A | l Enal I    | Mod 201   |

Bhatt DL. AHA 2018, Chicago. Icosapent Ethyl Better

Bhatt DL, Steg PG, Miller M, et al. N Engl J Med. 2019.

reduce-it

#### REDUCE-IT Tertiary Endpoints: Cardiac Arrest, Sudden Cardiac Death, Arrhythmias

| Endpoint                                                                    | Icosapent Ethyl<br>n/N (%) | Placebo<br>n/N (%) | Hazard Ratio<br>(95% CI) |
|-----------------------------------------------------------------------------|----------------------------|--------------------|--------------------------|
| Cardiac Arrest                                                              | 22/4089 (0.5%)             | 42/4090 (1.0%)     | 0.52 (0.31, 0.86)        |
| Sudden<br>Cardiac Death                                                     | 61/4089 (1.5%)             | 87/4090 (2.1%)     | 0.69 (0.50, 0.96)        |
| Cardiac<br>Arrhythmias<br>Requiring<br>Hospitalization<br>of $\ge$ 24 Hours | 188/4089 (4.6%)            | 154/4090 (3.8%)    | 1.21 (0.97, 1.49)        |

uce-it

#### **Treatment-Emergent Adverse Events**



|                                                     | lcosapent<br>Ethyl<br>(N=4089) | Placebo<br>(N=4090) | P-value |
|-----------------------------------------------------|--------------------------------|---------------------|---------|
| Subjects with at Least One TEAE, n (%)              | 3343 (81.8%)                   | 3326 (81.3%)        | 0.63    |
| Serious TEAE                                        | 1252 (30.6%)                   | 1254 (30.7%)        | 0.98    |
| TEAE Leading to Withdrawal of Study Drug            | 321 (7.9%)                     | 335 (8.2%)          | 0.60    |
| Serious TEAE Leading to Withdrawal of<br>Study Drug | 88 (2.2%)                      | 88 (2.2%)           | 1.00    |
| Serious TEAE Leading to Death                       | 94 (2.3%)                      | 102 (2.5%)          | 0.61    |

#### Treatment-Emergent Adverse Event of Interest: Serious Bleeding



|                                 | lcosapent<br>Ethyl<br>(N=4089) | Placebo<br>(N=4090) | P-value |
|---------------------------------|--------------------------------|---------------------|---------|
| Bleeding related disorders      | 111 (2.7%)                     | 85 (2.1%)           | 0.06    |
| Gastrointestinal bleeding       | 62 (1.5%)                      | 47 (1.1%)           | 0.15    |
| Central nervous system bleeding | 14 (0.3%)                      | 10 (0.2%)           | 0.42    |
| Other bleeding                  | 41 (1.0%)                      | 30 (0.7%)           | 0.19    |

- No fatal bleeding events in either group
- Adjudicated hemorrhagic stroke no significant difference between treatments (13 icosapent ethyl versus 10 placebo; P=0.55)

# Adjudicated Events: Hospitalization for Atrial Fibrillation or Atrial Flutter



| Primary System Organ Class<br>Preferred Term                         | lcosapent<br>Ethyl<br>(N=4089) | Placebo<br>(N=4090) | P-value |
|----------------------------------------------------------------------|--------------------------------|---------------------|---------|
| Positively Adjudicated Atrial<br>Fibrillation/Flutter <sup>[1]</sup> | 127 (3.1%)                     | 84 (2.1%)           | 0.004   |

Note: Percentages are based on the number of subjects randomized to each treatment group in the Safety population (N). All adverse events are coded using the Medical Dictionary for Regulatory Activities (MedDRA Version 20.1). [1] Includes positively adjudicated Atrial Fibrillation/Flutter clinical events by the Clinical Endpoint Committee (CEC). P value was based on stratified log-rank test.

# Achieved Triglyceride Levels: <150 mg/dL and ≥150 mg/dL





#### **Potential Benefits of EPA**

Effects of EPA on Plaque Progression

|          | Endothelial Dysfunction/<br>Oxidative Stress                                                             | Inflammation/<br>Plaque Growth                                  | Unstable Plaque                                                                                  |
|----------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Increase | Endothelial function<br>Nitric oxide bioavailablity                                                      | EPA/AA ratio                                                    | Fibrous cap thickness<br>Lumen diameter<br>Plaque stability                                      |
| Decrease | Cholesterol crystalline domains<br>Ox-LDL<br>RLP-C<br>Adhesion of monocytes<br>Macrophages<br>Foam cells | IL-6<br>ICAM-1<br>IL-10<br>hsCRP<br>Lp-PLA <sub>2</sub><br>MMPs | Plaque volume<br>Arterial stiffness<br>Plaque vulnerability<br>Thrombosis<br>Platelet activation |

Adapted with permission\* from Ganda OP, Bhatt DL, Mason RP, Miller M, Boden WE. Unmet need for adjunctive dyslipidemia therapy in hypertriglyceridemia management. *J Am Coll Cardiol.* 2018;72:330-343. [\*https://creativecommons.org/licenses.org/by-nc/4.0/]



Possible Mechanisms by which Triglyceride-Rich Lipoproteins Give Rise to Inflammation and Accentuate Atherogenesis

Courtesy of Dr. Peter Libby 2019

### **Antiplatelet and Anticoagulant Pathways**



Nature Reviews | Cardiology

Reproduced with permission from Bhatt DL. Advances in atherosclerosis, atrial fibrillation, and valvular disease. Nat. Rev. Cardiol. doi:10.1038/nrcardio.2017.212.2018.

#### Placebo-corrected Reductions in Blood Pressure from Baseline with Icosapent Ethyl 4g/day



Prespecified exploratory analysis with no adjustment for multiple comparisons.

#### Bhatt DL, Steg PG, Miller M. N Engl J Med. 2019;380:1678.

# Proportions of First and Subsequent Events Coduce-in



Bhatt DL, Steg PG, Miller M, et al. J Am Coll Cardiol. 2019.

# **First and Subsequent Events**





Bhatt DL, Steg PG, Miller M, et al. J Am Coll Cardiol. 2019.

**Note:** WLW method for the 1st events, 2nd events, and 3rd events categories; Negative binomial model for  $\geq$ 4th events and overall treatment comparison.

#### **Total (First and Subsequent) Events** Primary: CV Death, MI, Stroke, Coronary Revasc, Unstable Angina

Primary Composite Endpoint



# For Every 1000 Patients Treated with Icosapent Ethyl for 5 Years:

-42

Fatal or Nonfatal MI



Endpoint

\_200

0

-50

-100

-150

**Risk Difference** 

-12

Cardiovascular

Death

#### Bhatt DL, Steg PG, Miller M, et al. J Am Coll Cardiol. 2019.

# Primary Composite Endpoint: Total Endpoint Events by Baseline TG Tertiles

| TOTAL EVENTS – Primary Composite<br>Endpoint/Subgroup           | lcosapent<br>Ethyl             | Placebo                        | RR (95% CI)      | P-value    |
|-----------------------------------------------------------------|--------------------------------|--------------------------------|------------------|------------|
|                                                                 | Rate per 1000<br>Patient Years | Rate per 1000<br>Patient Years |                  |            |
| Primary Composite Endpoint (ITT)                                | 61.1                           | 88.8                           | 0.70 (0.62–0.78) | <0.0001    |
| Baseline Triglycerides by Tertiles*                             |                                |                                |                  |            |
| ≥81 to ≤190 mg/dL                                               | 56.4                           | 74.5                           | 0.74 (0.61–0.90) | 0.0025     |
| >190 to ≤250 mg/dL                                              | 63.2                           | 86.8                           | 0.77 (0.63–0.95) | 0.0120     |
| >250 to ≤1401 mg/dL                                             | 64.4                           | 107.4                          | 0.60 (0.50–0.73) | <0.0001    |
| 0.2 0.6 1.0 1.4 1.8<br>Icosapent Ethyl Placebo<br>Better Better |                                |                                | *P (interacti    | on) = 0.17 |

reduce-it

Bhatt DL. ACC 2019, New Orleans.

# Conclusions



Compared with placebo, icosapent ethyl 4g/day significantly reduced important CV events by **25%**, including:

- **20%** reduction in death due to cardiovascular causes
- **31%** reduction in heart attack
- 28% reduction in stroke

Low rate of adverse effects, including:

- Small but significant increase in atrial fibrillation/flutter
- Non-statistically significant increase in serious bleeding

Consistent efficacy across multiple subgroups

- Including baseline triglycerides from 135-500 mg/dL
- Including secondary and primary prevention cohorts

# Conclusions



Compared with placebo, icosapent ethyl 4g/day significantly reduced total cardiovascular events by **30%**, including:

- **25%** reduction in first cardiovascular events
- **32%** reduction in second cardiovascular events
- **31%** reduction in third cardiovascular events
- **48%** reduction in fourth or more cardiovascular events

Analysis of first, recurrent, and total events demonstrates the large burden of ischemic events in statin-treated patients with baseline triglycerides  $> \sim 100 \text{ mg/dL}$  and the potential role of icosapent ethyl in reducing this residual risk

#### American Diabetes Association (ADA) Issues Updates to the 2019 Standards of Medical Care in Diabetes

#### Section 10 – Cardiovascular Disease and Risk Management: Lipid Management<sup>1</sup>

- Treatment of Other Lipoprotein Fractions or Targets
  - In patients with ASCVD or other cardiac risk factors on a statin with controlled LDL-C, but elevated triglycerides (135-499), the addition of icosapent ethyl should be considered to reduce cardiovascular risk. A
  - "It should be noted that data are lacking with other omega-3 fatty acids, and results of the REDUCE-IT trial should not be extrapolated to other products."
- Other Combination Therapy
  - Combination therapy (statin/fibrate) has not been shown to improve atherosclerotic cardiovascular disease outcomes and is generally not recommended. A
  - Combination therapy (statin/niacin) has not been shown to provide additional cardiovascular benefit above statin therapy alone, may increase the risk of stroke with additional side effects, and is generally not recommended. **A**

<sup>1.</sup> American Diabetes Association. 10. Cardiovascular disease and risk management: Standards of Medical Care in Diabetes—2019 [web annotation]. Diabetes Care 2019;42(Suppl.1):S103–S123. https://hyp.is/JHhz\_ICrEembFJ9LIVBZIw/care.diabetesjournals.org/content/42/Supplement\_1/S103. Updated March 27, 2019. Accessed March 28, 2019.

Roundup of Recent Clinical Trial Evidence to Reduce ASCVD Events

Sergio Fazio, MD, PhD



# Sergio Fazio, MD, PhD

William and Sonja Connor Chair of Preventive Cardiology Professor of Medicine, Physiology & Pharmacology Director, Center for Preventive Cardiology Knight Cardiovascular Institute Oregon Health & Science University Portland, OR

 Disclosures: Consulting Fees: Amarin, Amgen, AstraZeneca, Esperion, Novartis A 68-year-old gentleman with 30 years of continuous exposure to statin therapy and recent finding of calcified coronaries (Agatston 2450)

"I thought the statin was supposed to protect me"

#### **Residual CV Risk in Subjects on Statin Monotherapy**



#### Residual CV risk may be due not only to other lipid measures that may not be controlled, but other risk factors at suboptimal control such as hypertension, diabetes, or smoking.

<sup>1</sup>4S Group. *Lancet.* 1994;344:1383-9. <sup>2</sup>LIPID Study Group. *N Engl J Med.* 1998;339:1349-57. <sup>3</sup>Sacks FM et al. *N Engl J Med.* 1996;335:1001-9. <sup>4</sup>HPS Collaborative Group. *Lancet.* 2002;360:7-22. <sup>5</sup>Shepherd J et al. *N Engl J Med.* 1995;333:1301-7. <sup>6</sup>Downs JR et al. *JAMA.* 1998;279:1615-22. <sup>7</sup>Ridker PM et al. *N Engl J Med.* 2008;359:2195-207.

## Additional LDL-C Lowering in Subjects on Statin Monotherapy Reduces CV Risk



Cl=confidence interval; Cor Revasc=coronary revascularization; EZ=ezetimibe; HR=hazard ratio; MACE=major adverse cardiovascular events; MI=myocardial infarction; NNT=number needed to treat; Simva=simvastatin; UA=unstable angina.

1. Cannon CP et al. N Engl J Med. 2015;372:2387-97. 2. Sabatine MS et al. N Engl J Med. 2017;376:1713-22. 3. Schwartz GG et al. N Engl J Med. 2018;379:2097-107.

# Pharmacologic Approaches to Managing Residual CV Risk



Niacin, PCSK9i, antisense?

# **Fenofibrate Outcome Trials**

| Study                            | CV Risk<br>Profile                                                               | Statin Use                                                       | Daily<br>Inter-<br>vention | Median<br>Baseline<br>TG Level | Effect<br>on TG<br>Level | Primary<br>Outcome                                                                                               | Primary<br>Outcome<br>Results                                             |
|----------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------|--------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| <b>ACCORD</b><br>(N=5518)        | • T2DM<br>• 40-79 yrs<br>w/CVD <b>or</b><br>• 55-79 yrs w/ ≥2<br>CV risk factors | All pts:<br>Open-label<br>simvastatin<br>(mean dose:<br>22 mg/d) | Fenofibrate                | 162 mg/dL                      | -26%                     | <ul> <li>Nonfatal MI<br/>or</li> <li>Stroke<br/>or</li> <li>CV death</li> <li>(Mean f/u:<br/>4.7 yrs)</li> </ul> | <ul> <li>HR=0.92*<br/>(95% CI, 0.79-<br/>1.08)</li> <li>P=0.32</li> </ul> |
| <b>FIELD</b><br>(N=9795 <b>)</b> | • T2DM<br>• 50-75 yrs                                                            | Added during<br>study in 2547 pts<br>(26%)                       | Fenofibrate                | 154 mg/dL                      | –30%<br>(at 1 yr)        | <ul> <li>Nonfatal MI<br/>or</li> <li>CHD death</li> <li>Median f/u:<br/>5 yrs</li> </ul>                         | <ul> <li>HR=0.89*<br/>(95% CI, 0.75-<br/>1.05)</li> <li>P=0.16</li> </ul> |

# \*Note that *post hoc* analysis for both studies found statistically significant benefit in the subgroup of patients with TG≥204 mg/dL & HDL-C ≤34 md/dL (Sacks FM et al. *N Engl J Med*. 2010;363:692-4).

ACCORD Study Group et al. N Engl J Med. 2010;362:1563-74. Keech A et al. Lancet. 2005;366:1849-61.

#### **Niacin Outcome Trials**

AIM-HIGH (-29% TG) Cumulative % with Primary Outcome 50 **Combination Therapy** Monotherapy 40 30 HR 1.02, 95% CI 0.87-1.21 Log-rank P=0.79 16.4% 20 16.2% 10 0 2 3 Time (years) N at risk Monotherapy 1696 1581 1381 910 436 **Combination Therapy 1718** 1606 1366 903 428

#### HPS2-THRIVE (-26% TG)

Effect of ERN / LRPT on Major Vascular Events



#### CANTOS: Reducing Inflammation by Blocking IL1-beta Reduces CV Events in Subjects on Statin Therapy

**CANTOS: Primary Cardiovascular Endpoint (MACE)** 



**NEJM 2018** 

# **Reducing Inflammation Doesn't Always Work**



Canakinumab Anti-inflammatory Thrombosis Outcomes Study

2011 - 2017

#### Interleukin-1<sub>β</sub> Inhibition

- **IL-1**β
- IL-6
- hsCRP
- ↓ 17% reduction in MACE+
- ← LDL, BP, coagulation

CARDIOVASCULAR INFLAMMATION REDUCTION TRIAL

2013 - 2018

#### Low-dose Methotrexate

- ↔ IL-1β
- ↔ IL-6
- ✦ hsCRP
- No reduction in MACE+

# Anticoagulation and CVD Risk Reduction: The COMPASS Trial



Eikelboom JW et al. N Eng J Med. 2017;377:1319-30.

#### Risk Reduction of R+A vs A Rivaroxaban plus aspirin (R+A) vs aspirin (A)

|                    | Absolute RR  | Relative RR | Р       |
|--------------------|--------------|-------------|---------|
| Primary<br>outcome | ↓1.3%        | ↓24%        | <0.0001 |
| All-cause death    | ↓0.7%        | ↓18%        | 0.01    |
| Bleeding           | <b>↑1.2%</b> | 170%        | 0.01    |

#### **Primary Endpoint Components**

|          | <b>R + A</b><br>N=9152 | <b>A</b><br>N=9126 | Rivaroxaban + Aspirin<br>vs Aspirin |        |
|----------|------------------------|--------------------|-------------------------------------|--------|
| Outcome  | N<br>(%)               | N<br>(%)           | HR<br>(95% CI)                      | Р      |
| CV death | 160<br>(1.7%)          | 203<br>(2.2%)      | 0.78<br>(0.64-0.96)                 | 0.02   |
| Stroke   | 83<br>(0.9%)           | 142<br>(1.6%)      | 0.58<br>(0.44-0.76)                 | <0.001 |
| МІ       | 178<br>(1.9%)          | 205<br>(2.2%)      | 0.86<br>(0.70-1.05)                 | 0.14   |

# **COMPASS Trial: Net Clinical Benefit**

| Outcome                       | Rivarox+ASA<br>(N, %) | ASA Alone<br>(N, %) | Rivarox+ASA<br>vs ASA Alone (HR,<br>P Value) |
|-------------------------------|-----------------------|---------------------|----------------------------------------------|
| Major Bleeding                | 288 (3.1)             | 170 (1.9)           | 1.70, <0.001                                 |
| Fatal Bleeding                | 15 (0.2)              | 10 (0.1)            | 1.49, 0.32                                   |
| Nonfatal ICH                  | 21 (0.2)              | 19 (0.2)            | 1.10, 0.77                                   |
| Nonfatal Bleed Critical Organ | 42 (0.5)              | 29 (0.3)            | 1.43, 0.14                                   |
| Other Major Bleeding          | 210 (2.3)             | 112 (1.2)           | 1.88, <0.001                                 |
| Minor Bleeding                | 838 (9.2)             | 503 (5.5)           | 1.70, <0.001                                 |
| Major GI Bleed                | 140 (1.5)             | 65 (0.7)            | 2.15, <0.001                                 |
| Net Clinical Benefit*         | 431 (4.7)             | 534 (5.9)           | 0.80, <0.001                                 |

# **CV** Outcome Trials in Diabetes

| Study (N)                              | Drug (Class)            | Primary endpoint                                              | Hazard ratio                                                                          |
|----------------------------------------|-------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------|
| EMPA-REG <sup>1</sup><br>7,020         | Empagliflozin<br>SGLT-2 |                                                               | 0.86, (95% CI, 0.74, 0.99)<br>P=0.0382                                                |
| LEADER <sup>2</sup><br>9,340           | Liraglutide<br>GLP-1 RA |                                                               | 0.87, (95% CI, 0.78-0.97)<br>P=0.001 for non-inferiority<br>P=0.01 for superiority    |
| SUSTAIN-6 <sup>3</sup><br>3,297        | Semaglutide<br>GLP-1 RA |                                                               | 0.74, (95% CI, 0.58–0.95)<br>P<0.001 for noninferiority<br>P=0.02 for superiority     |
| CANVAS⁴<br>10,134                      | Canagliflozin<br>SGLT-2 |                                                               | 0.86, (95% CI, 0.75-0.97)<br>P<0.0001 for noninferiority<br>P=0.0158 for superiority  |
| HARMONY <sup>5</sup><br>10,793         | Albiglutide<br>GLP-1 RA |                                                               | 0.78, (95% CI, 0.68–0.90)<br>P<0.0001 for non-inferiority<br>P=0.0006 for superiority |
| DECLARE TIMI-58 <sup>6</sup><br>17,160 | Dapagliflozin<br>SGLT-2 | CV death, non-fatal myocardial infarction, or ischemic stroke | 0.93, (95% CI, 0.84-1.03)<br>P<0.001 for noninferiority<br>P=0.17 for superiority     |

<sup>1</sup>Zinman B et al. *N Engl J Med.* 2015;373:2117-28. <sup>2</sup>Marso SP et al. *N Engl J Med.* 2016;375:311-22. <sup>3</sup>Marso SP et al. *N Engl J Med.* 2016;375:1834-44. <sup>4</sup>Neal B et al. *N Engl J Med.* 2017;377:644-57. <sup>5</sup> Hernandez AF et al. *Lancet.* 2018;392;1519-29. <sup>6</sup>Wiviott SD et al. *N Engl J Med.* 2019;380:347-57.

## **SGLT2** inhibitors: CV Outcome Studies

- Empa-Reg (Empagliflozin): 2015
- CANVAS (Canagliflozin): 2017
- DECLARE (Dapagliflozin): 2018
- VERTIS-CV (Ertugliflozin): ~2020

# **DECLARE TIMI-58: Dual Primary Outcomes**

Dapagliflozin vs placebo n=17,160, 60% with no prior ASCVD, median f/u 4.2 yr.



Wiviott SD et al. *N Engl J Med*. 2019;380:347-57.

Hospitalization for Heart Failure, HR 0.73 (0.61-0.88)

#### **DECLARE: MACE by Prior MI**



Furtado RHM et al. *Circulation.* 2019;139:2516-27.

#### **DECLARE: HHF Outcomes by EF**



Verma S, McMurray JJV *Circulation.* 2019: March 21-on line;

Kato, ET et al *Circulation.* 2019: March 21-on line

# Renal Outcomes with SGLT-2 Inhibitors



#### Renal Outcomes: GLP1ra vs SGLT2i

# Progression to sustained doubling of creatinine, $\geq$ 40% decline in eGFR, ESRD, or death from renal disease.

| Trials                                                                        | Patients         | Events     | Treatment<br>n/N | Placebo<br>n/N | Weights       |                                       | HR [95% CI]                            |
|-------------------------------------------------------------------------------|------------------|------------|------------------|----------------|---------------|---------------------------------------|----------------------------------------|
| GLP1-RA                                                                       |                  |            |                  |                |               |                                       |                                        |
| ELIXA                                                                         | 6063             | 76         | 35/3032          | 41/3031        | 9.5           |                                       | 1.16 [0.74, 1.83]                      |
| LEADER                                                                        | 9340             | 184        | 87/4668          | 97/4672        | 23.4          |                                       | 0.89 [0.67, 1.19]                      |
| SUSTAIN-6                                                                     | 3297             | 32         | 18/1648          | 14/1649        | 4.0           | · · · · · · · · · · · · · · · · · · · | 1.28 [0.64, 2.58]                      |
| EXSCEL                                                                        | 12914            | 519        | 246/6456         | 273/6458       | 63.1          |                                       | 0.88 [0.74, 1.05]                      |
| Fixed Effects for GLF                                                         | P1-RA (P-value=  | 0.24)      |                  |                |               |                                       | 0.92 [0.80, 1.06]                      |
| SGLT2i                                                                        |                  |            |                  |                |               | tin                                   |                                        |
|                                                                               |                  |            |                  |                |               |                                       |                                        |
| EMPA-REG OUTCOM                                                               | IE 6968          | 152        | 81/4645          | 71/2323        | 20.9          |                                       | 0.54 [0.40, 0.75]                      |
|                                                                               | IE 6968<br>10142 | 152<br>249 | 81/4645<br>NA    | 71/2323<br>NA  | 20.9 <b>-</b> |                                       | 0.54 [0.40, 0.75]<br>0.60 [0.47, 0.77] |
| CANVAS Program                                                                |                  |            |                  |                |               |                                       |                                        |
| EMPA-REG OUTCOM<br>CANVAS Program<br>DECLARE-TIMI 58<br>Fixed Effects for SGL | 10142<br>17160   | 249<br>365 | NA               | NA             | 34.0 ⊢        |                                       | 0.60 [0.47, 0.77]                      |
| CANVAS Program<br>DECLARE-TIMI 58                                             | 10142<br>17160   | 249<br>365 | NA               | NA             | 34.0 ⊢        |                                       | 0.60 [0.47, 0.77]<br>0.53 [0.43, 0.66] |

Hazard Ratio

Zelniker TA et al. Circulation. 2019;13:2022-31.

## **SGLT2i and Renal Outcome Trials**

• CREDENCE (Canagliflozin)

NCT 02065791; (stopped early - July 2018)

- DAPA-CKD (Dapagliflozin) NCT 03036150 (completion date ~2020)
- EMPA-KIDNEY (Empagliflozin) NCT 03594110 (~2022)

#### **CREDENCE: ESRD, Doubling of Serum Creatinine, Renal or CV Death**



Perkovic V et al. N Engl J Med. 2019; Apr 14. [Epub ahead of print]

#### T2DM and CVD: 2018 ACC/ADA Decision Pathway



\*Most trials of SGLT2i and GLP-1RA required baseline A1C ≥7% (Example: EXSCEL Trial required HbA1c ≥ 6.5%), and most patients were already on metformin as first-line therapy if tolerated and not contraindicated

#### Das SR et al. J Am Coll Cardiol. 2018;72:3200-23



#### **ASCVD** Risk Categories and LDL-C Treatment Goals

|                |                                                                                                                                               | Treatment goals  |                      |                  |  |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|------------------|--|
| Risk category  | Risk factors/10-year risk                                                                                                                     | LDL-C<br>(mg/dL) | Non-HDL-C<br>(mg/dL) | Apo B<br>(mg/dL) |  |
|                | <ul> <li>Progressive ASCVD including unstable angina in individuals after<br/>achieving an LDL-C &lt;70 mg/dL</li> </ul>                      |                  |                      |                  |  |
| Extreme risk   | <ul> <li>Established clinical cardiovascular disease in individuals with DM,<br/>stage 3 or 4 CKD, or HeFH</li> </ul>                         | <55              | <80                  | <70              |  |
|                | <ul> <li>History of premature ASCVD (&lt;55 male, &lt;65 female)</li> </ul>                                                                   |                  |                      |                  |  |
|                | <ul> <li>Established or recent hospitalization for ACS, coronary, carotid or<br/>peripheral vascular disease, 10-year risk &gt;20%</li> </ul> |                  |                      |                  |  |
| Very high risk | <ul> <li>DM <u>or</u> stage 3 or 4 CKD with 1 or more risk factor(s)</li> <li>HeFH</li> </ul>                                                 | <70              | <100                 | <80              |  |
| High risk      | <ul> <li>– ≥2 risk factors and 10-year risk 10%-20%</li> <li>– DM or stage 3 or 4 CKD with no other risk factors</li> </ul>                   | <100             | <130                 | <90              |  |
| Moderate risk  | ≤2 risk factors and 10-year risk <10%                                                                                                         | <100             | <130                 | <90              |  |
| Low risk       | 0 risk factors                                                                                                                                | <130             | <160                 | NR               |  |

Jellinger PS et al. Endocr Pract. 2017;23:479-97.

#### **AHA/ACC 2018 Cholesterol Guidelines**



Grundy SM et al. Circulation. 2018;Nov. 10

#### CLEAR Harmony: 52-week Lipid Efficacy with Bempedoic Acid, an ATP Citrate Lyase inhibitor

n= 2230 patients with ASCVD or FH or both, on max tolerated statin ± other lipid Rx



Ray KK et al. N Engl J Med. 2019;380:1022-32.

# Residual HTG Predicts Residual ASCVD Risk Despite LDL-C at Goal on Statin Monotherapy

Despite achieving LDL-C <70 mg/dL with a high-dose statin, patients with TG  $\geq$ 150 mg/dL have a 41% higher risk of coronary events\*



\*Death, myocardial infarction, or recurrent acute coronary syndrome; PROVE IT-TIMI 22. Miller M et al. *J Am Coll Cardiol*. 2008;51:724-30.

#### **CV** Outcomes Trials in Patients with HTG

|                         | Reported                        | Ongoing                                   |                                                |
|-------------------------|---------------------------------|-------------------------------------------|------------------------------------------------|
|                         | REDUCE-IT*                      | STRENGTH*                                 | <b>PROMINENT</b> *                             |
| Agent<br>Dose           | EPA (EE)<br>4 g/d               | EPA+DHA (FFA)<br>4 g/d                    | SPPARMα – Pemafibrate<br>0.2 mg bid            |
| Ν                       | 8,179                           | Estimated 13,000                          | Estimated 10,000                               |
| Age                     | ≥45 years                       | ≥18 years                                 | ≥18 years                                      |
| Risk Profile            | CVD (70%) or<br>↑CVD risk (30%) | CVD (50%) or<br>↑CVD risk (50%)           | T2DM only<br>CVD (2/3) or<br>↑CVD risk (1/3)   |
| Follow-up               | 4.8 years                       | 3–5 years (planned)                       | 5 years (planned)                              |
| Statin Use              | 100% (at LDL-C goal)            | 100% (at LDL-C goal)                      | Moderate- / high-intensity or<br>LDL <70 mg/dL |
| Primary Endpoint        | Expanded MACE                   | Expanded MACE                             | Expanded MACE                                  |
| Entry TG<br>Entry HDL-C | 135–499 mg/dL<br>N/A            | 200–499 mg/dL<br><40 mg/dL M, <45 mg/dL W | 200–499 mg/dL<br>≤40 mg/dL                     |

\*Locations: International sites; Statistics: Powered for 15% RRR. REDUCE-IT: Bhatt DL et al. *N Engl J Med.* 2019;380:11-22. STRENGTH: NCT02104817. PROMINENT: NCT03071692.

#### **REDUCE-IT Study of EPA: Effect on the Primary Endpoint** (CV Death, MI, Stroke, Coronary Revasc, Unstable Angina)



ARR=absolute risk reduction; CI=confidence interval; Revasc=revascularization; RRR=relative risk reduction. Bhatt DL et al. *N Engl J Med.* 2019;380:11-22. Bhatt DL. AHA 2018, Chicago.

#### Mechanism-based Statin-adjunct Therapy for ASCVD Prevention



ASO=antisense oligonucleotide. After Ridker PM. J Am Coll Cardiol. 2018;72:3320-31.

#### Statin Therapy Adjuncts Proven to Reduce ASCVD



\*Major inclusion criteria for each trial.

ACS=acute coronary syndrome; ASCVD=atherosclerotic cardiovascular disease. *After* Orringer CE. *Trends in Cardiovasc Med.* 2019. May 4. [Epub ahead of print]

In patients with ASCVD or other cardiac risk factors on a statin with controlled LDL-C, but elevated triglycerides (135-499), the addition of icosapent ethyl should be considered to reduce cardiovascular risk. (Grade A)

# Conclusions

- After a long drought, a plethora of clinical studies has provided evidence for additional pharmacologic avenues to reduce CVD risk in statin-treated
- Cardio-protective agents should be preferred for diabetes
   management
- Control of coagulation and inflammation still needs to be positioned for wider scopes in CVD risk reduction
- The value of additional LDL lowering is proven, but use of EPA for subjects with elevated TG produces even larger CV benefits