

New Era of ASCVD Lipid Risk Management

Michael Miller, MD, FACC, FAHA (Program Chair) Professor of Cardiovascular Medicine University of Maryland School of Medicine

> **Sergio Fazio,** MD, PhD The William and Sonja Connor Chair of Preventive Cardiology Portland, OR

James A. Underberg, MD, MS, FACPM, FACP, FASH, FNLA Clinical Assistant Professor of Medicine NYU School of Medicine & NYU Center for Prevention of Cardiovascular Disease New York, NY

> Karol E. Watson, MD, PhD, FACC Professor of Medicine/Cardiology Co-Director, UCLA Program in Preventive Cardiology Los Angeles, CA

Update on Risk Status in ASCVD

James A. Underberg, MD, MS, FACPM, FACP, FASH, FNLA

Clinical Assistant Professor of Medicine NYU School of Medicine NYU Langone Center for Cardiovascular Disease Prevention Director, Bellevue Hospital Lipid Clinic, New York, NY Past-President National Lipid Association President American Board of Clinical Lipidology Diplomate American Board of Clinical Lipidology

3

Faculty Disclosure: James Underberg

Dr. Underberg discloses that he received grant/research support from Aegerion Pharmaceuticals and Pfizer, is a consultant for Amarin Corporation, Ambry, and Amgen, and receives honoraria from Amgen, Amarin, Regeneron, and Sanofi.

Outline

- Who is at high risk for CVD events?
- ACC/AHA/Multisociety cholesterol guidelines approach to diagnosis: What's new?
- Screening and diagnosis, including fasting and nonfasting blood samples, non-HDLc assessment and CAC scoring
- Risk assessment based on ACC/AHA/Multisociety guidelines

Modifiable Risk Factors in Acute Myocardial Infarction (AMI): Young Adults

Men	During a First Myocardial Infa Young Adults (18-59 Years) in		Wome n	Temporal Trends in Prevalence of Modifiable Risk Facto in Young Adults During a First Myocardial Infarction
25%	Diabetes Mellitus	> 1 in 4	34%	60.0%
6%	Drug Abuse	> 1 in 20	5%	50.0%
57%	Hypertension	> 1 in 2	61%	40.0%
58%	Dyslipidemia	> 1 in 2	52%	Hypertension
16%	Obesity	> 1 in 6	23%	Lipids
54%	Smoking	> 1 in 2	50%	0.0% 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 20
92%	Any of these modifiable risk factors	> 9 in 10	91%	Smoking Vertension — Obesity — Diabetes Mellitus moking — Dyslipidemia — Drug Abuse
Catal	J Am Coll Cardiol. 2019;73(5):573-584			

ACC ASCVD Risk Estimator Plus

Ann Should Re	I lsed for Primary	Prevention Patients (Thos	e Without ASCVD) Only

	0		Female	White	African American	Other
Age must be between 20-79				74 85		
Systolic Blood Pressure (mm Hg)	*	Diastolic Blood Pres	SSURE (mm Hg) O			
 For Optimal Use: Estimate patient's 10-year A 	SCVD risk at an	initial visit to establish a r	eference point.			
Forecast the potential impa						
 Reassess ASCVD risk at follo 			······································			nd follow up values.
Use the information above	to help with clin					
Use the information above 1 Value must be between 130 - 320	to help with clin	Value must be between 20 -			must be between 30-300	
	to help with clin					
Value must be between 130 - 320	to help with clin	Value must be between 20 -	100		must be between 30-300	Never O
Value must be between 130 - 320 History of Diabetes? *	No	Value must be between 20 - Smoker?	100	Value Former 🕄	must be between 30-300	Never ()
Value must be between 130 - 320 History of Diabetes? * Yes	No	Value must be between 20 Smoker? 🕑 * Current	100	Value Former 🕄	must be between 30-300	Never () No

Using 10-year ASCVD Risk Estimate Plus Coronary Artery Calcium (CAC) Score to Guide Statin Therapy

cardiovascular disease (ASCVD) risk estimate	<5%	5–7.5% Consider	>7.5–20%	>20%
Consulting ASCVD risk estimate alone	recommended	for statin	statin	statin
Consulting ASCVD risk estimate + CAC If CAC score = 0	Statin not recommended	Statin not recommended	Statin not recommended	Recommend statin
If CAC score > 0	Statin not recommended	Consider for statin	Recommend statin	Recommend statin
Does CAC score modify treatment plan?	CAC not effective for this population	CAC can reclassify risk up or down	CAC can reclassify risk up or down	CAC not effective for this population

2018 Blood Cholesterol Guidelines

Candidates for CAC Measurement Who Might Benefit from Knowing Their CAC Score Is Zero

- Patients reluctant to initiate statin who wish to understand their risk and potential for benefit more precisely
- Patients concerned about need to reinstitute statin therapy after discontinuation for statin-associated symptoms
- Older patients (men 55–80 y of age; women 60–80 y of age) with low burden of risk factors who question whether they would benefit from statin therapy
- Middle-aged adults (40–55 y of age) with PCE-calculated 10-year risk for ASCVD 5% to <7.5% with factors that increase their ASCVD risk, although they are in a borderline risk group

Grundy SM, et al. J Am Coll Cardiol. 2019.25;73(24):e285-e350.

Measurements of LDL-C and Non-HDL-C

COR	LOE	Recommendations					
I	B-NR	n adults who are 20 years of age or older and not on lipid-lowering therapy, measurement of either a fasting or a nonfasting plasma lipid profile is effective in estimating ASCVD risk and locumenting baseline LDL-C.					
I	B-NR	In adults who are 20 years of age or older and in whom an initial nonfasting lipid profile reveals a triglycerides level of 400 mg/dL (≥4.5 mmol/L) or higher, a repeat lipid profile in the fasting state should be performed for assessment of fasting triglyceride levels and baseline LDL-C.					
		Recommendations for Measurements of LDL-C and Non-HDL-C					
COR	LOE	Recommendations					
lla	C-LD	For adults with an LDL-C level less than 70 mg/dL (<1.8 mmol/L), measurement of direct LDL-C or modified LDL-C estimate is reasonable to improve accuracy over the Friedewald formula.					
lla C-LD		In adults who are 20 years of age or older and without a personal history of ASCVD but with a family history of premature ASCVD or genetic hyperlipidemia, measurement of a fasting plasma lipid profile is reasonable as part of an initial evaluation to aid in the understanding and identification of familial lipid disorders.					

13

Monitoring Response to Drug Therapy

 Assess adherence and percentage response to LDL-C–lowering medications and lifestyle changes and

- Repeat lipid measurement 4 to 12 weeks after statin initiation or dose adjustment
- Repeat every 3 to 12 months as needed
- Responses to lifestyle and statin therapy are defined by percentage reductions in LDL-C levels compared with baseline.

Grundy SM, et al. J Am Coll Cardiol. 2019.25;73(24):e285-e350.

Patients with Primary Severe Hypercholesterolemia LDL-C levels \geq 190 mg/dL [\geq 4.9 mmol/L]

Diagnosed Clinically

- Patients with primary severe hypercholesterolemia (LDL-C levels ≥190 mg/dL [≥4.9 mmol/L]) have a high risk of ASCVD and premature and recurrent coronary events
- Dutch Lipid Clinic Network, Simon Broome, MEDPED, AHA Criteria
- Use FH Diagnosis app
- Diagnosed Genetically
 - Increased risk with positive mutation
- No FH Diagnosis with LDL >220 mg/dL
 - Very high risk and warrant aggressive LDL-lowering therapy

Grundy SM, et al. J Am Coll Cardiol. 2019.25;73(24):e285-e350.

Diabetes-Specific Risk Enhancers Independent of Other Risk Factors (AHA/ACC Guidelines)

- Long duration (≥10 years for type 2 diabetes mellitus or ≥20 years for type 1 diabetes mellitus)
- Albuminuria ≥30 mcg of albumin/mg creatinine
- eGFR <60 mL/min/1.73 m²
- Retinopathy
- Neuropathy
- ABI <0.9

ABI = ankle-brachial index; eGFR = estimated glomerular filtration rate Grundy SM, et al. *J Am Coll Car*diol. 2019.25;73(24):e285-e350.

Case #1 (continued)

- Repeat LDLc on ezetimibe 10 mg/dL (was 120 mg/dL)
- Started on evolocumab 140 mg sq/wks
- Lost 8 lbs and stopped smoking; walking 5 times a week
- Repeat labs LDLc 73 mg/dL, HDLc 43 mg/dL, TG 151 mg/dL, Total Cholesterol 146 mg/dL

```
• Next step ??
```

23

Case #2: Mr. E 58-year-old male, nonsmoker Following aggressive diet and lifestyle program, has lost 18 lbs over past 4 months Diet mostly vegan with occasional shellfish T2 DM for 11 years, taking metformin, SGLT2 inhibitor, HbA1c 7.1% Rosuvastatin 20 mg BMI 27, father died of MI age 55 Labs: LDLc 84, HDLc 38 mg/dL, TG 167 mg/dL, Total Cholesterol 155 mg/dL Next step ??

New Approaches to the Management of Patients at High-Risk of ASCVD Events

Karol E. Watson, MD, PhD, FACC Professor of Medicine/Cardiology David Geffen School of Medicine at UCLA Co-director, UCLA Program in Preventive Cardiology

Faculty Disclosure: Karol Watson

Dr. Watson discloses that she participates on the speaker's bureau for Boehringer Ingelheim and Eli Lilly and Company and is on the advisory board for Amgen, Amarin, Boehringer Ingelheim, Eli Lilly and Company, and Esperion.

Agenda

• AHA's simple 7

- LDL-C lowering with statins
- LDL-C lowering beyond statins: ezetimibe and PCSK9 inhibitors
- Lipid guidelines for primary and secondary prevention of ASCVD

29

Agenda

- AHA's simple 7
- LDL-C lowering with statin intensification
- LDL-C lowering beyond statins: ezetimibe and PCSK9 inhibitors
- Lipid guidelines for primary and secondary prevention of ASCVD

31

Statin...statin...statin...

33

Intensity of Statin Therapy

HIGH RISK PATIENT	MODERATE RISK PATIENT	LOW RISK PATIENT
High Intensity Statin	Moderate Intensity Statin	Low Intensity Statin
Daily dose lowers LDL-c ~50%	Daily dose lowers LDL-c ~30% -50%	Daily dose lowers LDL-c <30%
Atorvastatin (40†)-80 mg Rosuvasatin 20 (40) mg	Atorvastatin 10 (20) mg Rosuvastatin (5) 10 mg Simvastatin 20-40 mg‡ Pravstatin 40 (80) mg Lovastatin 40 mg Fluvastatin XL 80 mg Fluvastatin 40 mg bid Pitavastatin 2-4 mg	Simvastatin 10 mg Pravastatin 10-20 mg Lovastatin 20 mg Fluvastatin 20-40 mg Pitavastatin 1 mg

Stone NJ, et al. Circulation. 2014;129:S1-45.

The intensity of statin should match the intensity of risk

Agenda

- AHA's simple 7
- LDL-C lowering with statin intensification
- LDL-C lowering beyond statins: ezetimibe and PCSK9 inhibitors
- Lipid guidelines for primary and secondary prevention of ASCVD

37

ODYSSEY OUTCOMES Trial 18,924 post ACS patients (1-12 months) Run-in period of 2-16 weeks on high-intensity or maximum tolerated dose of atorvastatin or rosvastatin

2018 ACC/AHA Guideline on the Management of Blood Cholesterol

Primary Prevention

- 10-year ASCVD risk should guide therapy
 - For intermediate risk patients, consider moderate or high intensity statin therapy
 - For high risk patients, LDL-C should be reduced > 50%
 - It may be reasonable to add ezetimibe to maximally tolerated statin in patients with intermediate risk who would benefit from more aggressive LCL-C lowering

Grundy SM, et al. Circulation. 2019;139:e1046-e1081.

2018 ACC/AHA Guideline on the Management of Blood Cholesterol

Secondary Prevention

- High intensity statin therapy is indicated for clinical ASCVD, but if this cannot be used, moderate-intensity statin therapy can be utilized
- The first goal to achieve
 <u>></u> 50% reduction in LDL-c
- If LDL-c remains > 70 mg/dL, adding ezetimibe may be reasonable
- If LDL-c remains > 70 mg/dL, after addition of ezetimibe, adding PCSK9 inhibitor may be reasonable

Grundy SM, et al. Circulation. 2019;139:e1046-e1081.

Managing ASCVD Risk Beyond LDL-C Lowering Therapy

Michael Miller, MD, FACC, FAHA Professor of Cardiovascular Medicine University of Maryland School of Medicine

⊘medtelligence[™]

51

Faculty Disclosure: Michael Miller

Dr. Miller discloses that he receives a consulting fee from Amarin Pharma, Inc.

Managing ASCVD Risk Beyond LDL-C Lowering Therapy

- Pathologic mechanisms contributing to ASCVD via TRL
- Genetic evidence for TRL causal effects
- Outcomes studies on fibrates and niacin
- Outcomes studies of EPA/DHA; role of drug/dose & population studied
- REDUCE-IT trial results
- REDUCE-IT outcomes point to pleiotropic effect of EPA
- MOA of EPA to reduce ASCVD burden

Managing ASCVD Risk Beyond LDL-C Lowering Therapy

- Pathologic mechanisms contributing to ASCVD via TRL
- Genetic evidence for TRL causal effects
- Outcomes studies on fibrates and niacin
- Outcomes studies of EPA/DHA; role of drug/dose & population studied
- REDUCE-IT trial results
- REDUCE-IT outcomes point to pleiotropic effect of EPA
- MOA of EPA to reduce ASCVD burden

55

An Apo C-III Loss-of-Function Mutation Causes Very Low TG Levels and Lower Coronary Calcium Scores

Apo C-III Loss-of-function Mutations Reduce Apo C-III Levels and CHD Risk

57

ANGPTL3 Deficiency: Another Model of Low TG/Reduced CVD

Italian community with large
cohort of familial combined
hypolipidemia (FHBL2)ANGPTL3 LoF mutations:Image: Strain Strai

Managing ASCVD Risk Beyond LDL-C Lowering Therapy

- Pathologic mechanisms contributing to ASCVD via TRL
- Genetic evidence for TRL causal effects
- Outcomes studies on fibrates and niacin
- Outcomes studies of EPA/DHA; role of drug/dose & population studied
- REDUCE-IT trial results
- REDUCE-IT outcomes point to pleiotropic effect of EPA
- MOA of EPA to reduce ASCVD burden

59

Negative* Fenofibrate CVOTs (as Statin Adjunct)

Study	CV Risk Profile	Statin Use	Daily Inter- vention	Median Baseline TG Level	Effect on TG Level	Primary Outcome	Primary Outcome Results
ACCORD (N=5518)	• T2DM • 40-79 yrs w/CVD or • 55-79 yrs w/ ≥2 CV risk factors	All pts: Open-label simvastatin (mean dose: 22 mg/d)	Fenofibrate	162 mg/dL	-26%	 Nonfatal MI or Stroke or CV death (Mean f/u: 4.7 yrs) 	 HR=0.92* (95% CI, 0.79- 1.08) P=0.32
FIELD (N=9795)	• T2DM • 50-75 yrs	Added during study in 2547 pts (26%)	Fenofibrate	154 mg/dL	–30% (at 1 yr)	 Nonfatal MI or CHD death Median f/u: 5 yrs 	 HR=0.89* (95% CI, 0.75- 1.05) P=0.16

with TG \geq 204 mg/dL & HDL-C \leq 34 md/dL (Sacks FM, et al. *N Engl J Med.* 2010;363:692-4).

ACCORD Study Group, et al. N Engl J Med. 2010;362:1563-74. Keech A, et al. Lancet. 2005;366:1849-61.

Negative Niacin Outcome Studies (Added to Statin Therapy)

61

Managing ASCVD Risk Beyond LDL-C Lowering Therapy

- Pathologic mechanisms contributing to ASCVD via TRL
- Genetic evidence for TRL causal effects
- Outcomes studies on fibrates and niacin
- Outcomes studies of EPA/DHA; role of drug/dose & population studied
- REDUCE-IT trial results
- REDUCE-IT outcomes point to pleiotropic effect of EPA
- MOA of EPA to reduce ASCVD burden

Effect of OM-3 (Supplements/EPA-DHA) on CVD Events: 1999-2018

Study (Year)	EPA/DHA Dose (mg/d)	EPA / DHA Source	Source	Favors Treatment	Favors Control
DOIT (2010)	1150 / 800	Dietary supplement	Coronary Heart Disease		
AREDS-2 (2014)	650 / 350	Dietary supplement	Nonfatal MI	-	-
SU.FOL.OM3 (2010)	400 / 200	Dietary supplement	Stroke Ischemic Hemorrhagic		
Alpha Omega (2010)	226 / 150	Margarine with dietary supplement			
OMEGA (2010)	460 / 380	Rx EPA/DHA			
R&P (2013)	500 / 500	Rx EPA/DHA	Underclassified/Other		-
GISSI-HF (2008)	850 / 950	Rx EPA/DHA	Any Revascularization Coronary		•
ORIGIN (2012)	465 / 375	Rx EPA/DHA			
GISSI-P (1999)	850 / 1700	Rx EPA/DHA	Noncoronary		
VITAL (2018)	465 / 375	Rx EPA/DHA	Any		
ASCEND (2018)	465 / 375	Rx EPA/DHA			
T et al. JAMA Cardiol.			-		1.0 1.5 2.0 Ratio

63

Lack of Apparent Effect of OM-3 on ASCVD May Be Due to Low Doses, Use of Dietary Supplements, or Lack of HTG Subjects

JELIS: Larger Decrease in MACE in Those with TG >150 mg/dL and HDL-C <40 mg/dL*

Managing ASCVD Risk Beyond LDL-C Lowering Therapy

- Pathologic mechanisms contributing to ASCVD via TRL
- Genetic evidence for TRL causal effects
- Outcomes studies on fibrates and niacin
- Outcomes studies of EPA/DHA; role of drug/dose & population studied
- REDUCE-IT trial results
- REDUCE-IT outcomes point to pleiotropic effect of EPA
- MOA of EPA to reduce ASCVD burden

67

REDUCE-IT: <u>Reduc</u>tion of CV <u>E</u>vents with Icosapent Ethyl – <u>Intervention Trial</u>

REDUCE-IT: Key Baseline Characteristics

	Icosapent Ethyl (N=4089)	Placebo (N=4090)
Age (years)	64	64
Female, %	28.4%	29.2%
CV Risk Category, %		
Secondary Prevention Cohort	70.7%	70.7%
Primary Prevention Cohort	29.3%	29.3%
Prior Atherosclerotic Coronary Artery Disease, %	58.4%	58.5%
Prior Atherosclerotic Cerebrovascular Disease, %	15.7%	16.2%
Prior Atherosclerotic Peripheral Artery Disease, %	9.5%	9.5%
Type 2 Diabetes, %	57.9%	57.8%
Triglycerides (mg/dL), Median (Q1-Q3)	217 (177 - 272)	216 (176 - 274)
Triglyceride Category (by Tertiles)*		
≥81 to ≤190 mg/dL	median 163	3 mg/dL
>190 to ≤250 mg/dL	median 217	7 mg/dL
>250 to ≤1401 mg/dL	median 304	4 mg/dL
ne TG calculated as average of final screening TG and subs	equent TG value from date of	randomization.
_, Steg PG, Miller M, et al. <i>N Engl J Med</i> . 2019;380:11-22.		

69

REDUCE-IT: Key Baseline Characteristics

	lcosapent Ethyl (N=4089)	Placebo (N=4090)
Age (years)	64	64
Female, %	28.4%	29.2%
CV Risk Category, %		
Secondary Prevention Cohort	70.7%	70.7%
Primary Prevention Cohort	29.3%	29.3%
Prior Atherosclerotic Coronary Artery Disease, %	58.4%	58.5%
Prior Atherosclerotic Cerebrovascular Disease, %	15.7%	16.2%
Prior Atherosclerotic Peripheral Artery Disease, %	9.5%	9.5%
Type 2 Diabetes, %	57.9%	57.8%
Triglycerides (mg/dL), Median (Q1-Q3)	217 (177 - 272)	216 (176 - 274)
Triglyceride Category (by Tertiles)*		
≥81 to ≤190 mg/dL	median 163	3 mg/dL
>190 to ≤250 mg/dL	median 217	′ mg/dL
>250 to ≤1401 mg/dL	median 304	l mg/dL
aseline TG calculated as average of final screen randomization.	ing TG and subsequer	nt TG value from
att DL, Steg PG, Miller M, et al. N Engl J Med. 2019;380:11-22.		

REDUCE-IT: Effects on Biomarkers from Baseline to Year 1

	lcosapent Ethyl (N=4089) Median		Placebo (N=4090) Median		Median Between Group Difference at Year 1		
Biomarker (mg/dL)*	Baseline	Year 1	Baseline	Year 1	Absolute Change from Baseline	% Change from Baseline	% Change P-value
Triglycerides	216.5	175.0	216.0	221.0	-44.5	-19.7	<0.0001
Non-HDL-C	118.0	113.0	118.5	130.0	-15.5	-13.1	<0.0001
LDL-C	74.0	77.0	76.0	84.0	-5.0	-6.6	<0.0001
HDL-C	40.0	39.0	40.0	42.0	-2.5	-6.3	<0.0001
Аро В	82.0	80.0	83.0	89.0	-8.0	-9.7	<0.0001
EPA (µg/mL)	26.1	144.0	26.1	23.3	112.6	393.5	<0.001
oo B was measured at year : att DL, Steg PG, Miller M, et al		<i>1</i> . 2019;380	11-22.				

71

REDUCE-IT: Primary Endpoint Achieved

Prespecified Hierarchical Endpoint Testing

Endpoint	Hazard Ratio (95% Cl)	Icosapent Ethyl n/N (%)	Placebo n/N (%)	Hazard Ratio (95% CI)	RRR	P-valu
Primary Composite (ITT)	-	705/4089 (17.2%)	901/4090 (22.0%)	0.75 (0.68–0.83)	25%▼	<0.001
Key Secondary Composite (ITT)		459/4089 (11.2%)	606/4090 (14.8%)	0.74 (0.65–0.83)	26%▼	<0.00
Cardiovascular Death or Nonfatal Myocardial Infarction		392/4089 (9.6%)	507/4090 (12.4%)	0.75 (0.66–0.86)	25%▼	<0.00
Fatal or Nonfatal Myocardial Infarction		250/4089 (6.1%)	355/4090 (8.7%)	0.69 (0.58–0.81)	31%▼	<0.001
Urgent or Emergent Revascularization		216/4089 (5.3%)	321/4090 (7.8%)	0.65 (0.55–0.78)	35%▼	<0.00
Cardiovascular Death		174/4089 (4.3%)	213/4090 (5.2%)	0.80 (0.66–0.98)	20%▼	0.03
Hospitalization for Unstable Angina	_ 	108/4089 (2.6%)	157/4090 (3.8%)	0.68 (0.53–0.87)	32%▼	0.002
Fatal or Nonfatal Stroke	_ 	98/4089 (2.4%)	134/4090 (3.3%)	0.72 (0.55–0.93)	28%▼	0.01
Total Mortality, Nonfatal Myocardial Infarction, or Nonfatal Stroke		549/4089 (13.4%)	690/4090 (16.9%)	0.77 (0.69–0.86)	23%▼	<0.001
Total Mortality		274/4089 (6.7%)	310/4090 (7.6%)	0.87 (0.74–1.02)	13%▼	0.09
	0.4 1.0 nt Ethyl Better Place	1.4 cebo Better		RRR denotes re	elative risk	reductio

REDUCE-IT: Adverse Events of Interest – Serious Bleeding and AFib

	Icosapent Ethyl	Placebo		
	(N=4089)	(N=4090)	P value	
Bleeding related disorders	111 (2.7%)	85 (2.1%)	0.06	
Gastrointestinal bleeding	62 (1.5%)	47 (1.1%)	0.15	
Central nervous system bleeding	14 (0.3%)	10 (0.2%)	0.42	
Other bleeding	41 (1.0%)	30 (0.7%)	0.19	
No fatal bleeding events in either groupAdjudicated hemorrhagic stroke - no significant	difference between treatme	nts (13 icosapent eth	yl vs 10 placebo;	P=0.5
Positively Adjudicated Hospitalization for Atrial	127 (3.1%)	84 (2.1%)	0.004	
Fibrillation/Flutter	127 (0.170)	0+ (2.170)	0.004	
L, Steg PG, Miller M, et al. <i>N Engl J Med</i> . 2019;380:11-2	2.	uuu		

Primary Endpoint: USA Subgroup CV Death, MI, Stroke, Coronary Revasc, Unstable Angina

77

New Era of ACVD Lipid Risk Management

Managing ASCVD Risk Beyond LDL-C Lowering Therapy

- Pathologic mechanisms contributing to ASCVD via TRL
- Genetic evidence for TRL causal effects
- Outcomes studies on fibrates and niacin
- Outcomes studies of EPA/DHA; role of drug/dose & population studied
- REDUCE-IT trial results
- REDUCE-IT outcomes point to pleiotropic effect of EPA
- MOA of EPA to reduce ASCVD burden

Managing ASCVD Risk Beyond LDL-C Lowering Therapy

- Pathologic mechanisms contributing to ASCVD via TRL
- Genetic evidence for TRL causal effects
- Outcomes studies on fibrates and niacin
- Outcomes studies of EPA/DHA; role of drug/dose & population studied
- REDUCE-IT trial results
- REDUCE-IT outcomes point to pleiotropic effect of EPA
- MOA of EPA to reduce ASCVD burden

Biophysical Analysis: EPA Has Stable Extended Conformation in the Cell Membrane While DHA Has Disordering Effect

EPA Interacts Across the CVD Continuum to Reduce CV Events

Practical Considerations to Manage Residual Risk

Sergio Fazio, MD, PhD

Professor of Medicine Director, Center for Preventive Cardiology Oregon Health & Science University Editor-in-Chief *The American Journal of Preventive Cardiology*

⊘medtelligence[™]

Faculty Disclosure

Dr. Fazio discloses that he receives consulting fees from Amarin, Amgen, Astra, Kowa, and Novo Nordisk

2019 Multisociety Cholesterol Guidelines Summary

- Lifelong healthy lifestyle reinforced
- Improved ASCVD Risk Estimator Plus
 - can project potential **benefit** of risk-lowering interventions
 - can **track change** in risk over time
- CACS for improved diagnostic prediction and shared decisionmaking
- Identify risk-enhancing factors to help in deciding management
- Risk stratification of absolute 10-year ASCVD risk score into four buckets: Low, Borderline, Intermediate, and High

Grundy SM, et al. Circulation. 2019;139:e1082-e1143. https://www.acc.org/tools-and-practice-support/mobile-resources/features/2013-prevention-guidelines-ascvd-risk-estimator

AC	ACC Risk Calculator <i>Plus</i> to Assess Risk Category							
1. F	or CVD risk cal							
	<5% "Low Risk"	• /• •	o <7.5% rline Risk"		6 to <20% ediate Ris		≥20% "High Ri	
•	Current Age 🤁 🍍	Sex *			Race *			
	Age must be between 20-79	÷	Male	Female	White	Afric	an American	Other
•	Systolic Blood Pressure (mm Hg) *		Diastolic Blood Pres	sure (mm Hg) ^O				
	Value must be between 90-200	•	Value must be between 60-13	0	A T			
•	Total Cholesterol (mg/dL) *		HDL Cholesterol (mg	/dL) *		LDL Cholester	ol (mg/dL) 🕄 🔿	
		▼			-			•
2. '	Value must be between 130 - 320 History of Diabetes? *		Value must be between 20 - 1	00		Value must be betwee	n 30-300	
۷.	History of Diabetes? *	No	Smoker? 0 •	6	Forme	(i)	Neve	c 🚯
	On Hypertension Treatment? *		On a Statin? 🚯 ^O			On Aspirin The	erapy? 🔁 ^O	
ACC CHD	Yes	No	Yes	N	Ĩo	Yes		No
tools.a	acc.org/ascvd-risk-estimator-plus/	#!/calculate/estima	te			1111	11111111	hwww.w

Risk-Enhancing Factors

- Family history of premature ASCVD (men <55; women <65)
- Primary hypercholesterolemia
- Metabolic syndrome, 3 of 5 factors (increased waist circumference, elevated triglycerides, elevated blood pressure, elevated glucose, and low HDL-C
- Chronic kidney disease
- Chronic inflammatory conditions

Grundy SM, et al. Circulation. 2019;139:e1082-e1143.

2019 Multisociety Cholesterol Guidelines Summary

- High- and Very High-Risk ASCVD categories clarified
- Reinforced usage of statin therapy as first-line with high/maximum intensity for most in ASCVD
- New adjuncts (ezetimibe and PCSK9i evolocumab and alirocumab) now recommended when further LDL-C reduction warranted
- Presented same day as REDUCE-IT results were presented, so no guidance on TG-lowering provided

Current Guidance Regarding Statin Adjuncts: Fibrates, Niacin, Ezetimibe, or PCSK9i

- Combination therapy statin/fibrate has not been shown to improve ASCVD outcomes and is generally not recommended. (A)
- Combination therapy statin/niacin has not been shown to provide additional cardiovascular benefit above statin therapy alone, may increase the risk of stroke with additional side effects, and is generally not recommended. (A)
- For patients with diabetes and ASCVD, if LDL cholesterol is ≥70 mg/dL on high-intensity statin dose, consider adding LDL-lowering therapy such as ezetimibe or PCSK9 inhibitor. (A)
 - Ezetimibe preferred due to lower cost if little additional effect needed
 - PCSK9i preferred if more than 20% LDL-C reduction needed

```
(A)= High evidence.
```

Grundy SM, et al. Circulation. 2019;139:e1082-e1143.

95

CLEAR Shows Bempedoic Acid Benefits in Statin Intolerance—Now FDA Approved

345 patients with hypercholesterolemia and a history of intolerance to at least 2 statins (1 at the lowest available dose) 2:1 to bempedoic acid 180 mg or placebo once daily for 24 weeks

New Guidelines/Recommendations for Icosapent Ethyl to Prevent ASCVD in Patients with TG 135-500 mg/dL

Scientific Society	Treatment with Statin and Icosapent Ethyl for ASCVD Risk Reduction
American Diabetes Association (ADA)	In patients with ASCVD or other cardiac risk factors with <u>controlled LDL-C</u> , but elevated triglycerides (<u>135-499</u>)
European Society of Cardiology (ESC) / European Atherosclerosis Society (EAS)	In high-risk (or above) patients with TG levels between <u>135-499</u> mg/dL, n-3 PUFAs (icosapent ethyl 2x2 g/day) should be considered in <u>combination with a statin</u>
National Lipid Association (NLA)	For patients 45 years of age or older with clinical ASCVD, or 50 years of age or older with diabetes mellitus requiring medication and ≥ 1 additional risk factor, with fasting TG <u>135-499 mg/dL</u>
American Heart Association (AHA)	The use of n-3 FA (4 g/d) for improving atherosclerotic cardiovascular disease risk in patients with hypertriglyceridemia is supported by a 25% reduction in major adverse cardiovascular events in REDUCE-IT
American Association of Clinical Endocrinologists (AACE) / American College of Endocrinology (ACE)	If TG <u>135-499</u> , add icosapent ethyl 4 g/day if high ASCVD risk on <u>maximally tolerated</u> <u>statins</u>
SCVD = atherosclerotic cardiovascular disease; LD	L-C = low-density lipoprotein cholesterol; PUFA = polyunsaturated fatty acids; TG = triglyceride.

American Diabetes Association. [web annotation]. Diabetes Care. 2019;42(Suppl. 1):S103–S123. Retrieved from <a href="https://https/https:/https://https://https://https://http

Fish Oil <u>*Dietary Supplements*:</u> Poorly Regulated but Widely Used

- There are NO over-the-counter omega-3 products, <u>only</u> dietary supplements (with minimal FDA oversight)
- Dietary supplements are not recommended to treat diseases, but
- Benefits are claimed for heart, brain, weight, vision, inflammation, skin, liver fat, depression, age-related cognitive decline, allergies, bones, pregnancy/neonatal health, childhood behavior...
- Approximately 8% of US adults (19 million) take fish oil dietary supplements

Problems with Content of *Leading* US Fish Oil Dietary Supplements

High saturated fatty acid content of common fish oil dietary supplement makes it **solid at room temperature** (post-isolation)

Mason RP, Sherratt SCR. *Biochem Biophys Res Commun.* 2017;483:425-429. Hilleman D, Smer A. *Manag Care.* 2016;25:46-52. Albert BB, et al. *Sci Rep.* 2015;5:7928. Kleiner AC, et al. *J Sci Food Agric.* 2015;95:1260-7. Ritter JC, et al. *J Sci Food Agric.* 2013:93:1935-9. Jackowski SA, et al. *J Nutr Sci.* 2015;4:e30. Rundblad A, et al. *Br J Nutr.* 2017;117:1291-8. European Medicines Agency. 2018:712678.

2018 ACC/AHA Multisociety Guidelines

Value Statement: Low Value (LOE: B-NR)	At mid-2018 list prices, PCSK9 inhibitors have a low cost value (>\$150,000 per QALY) compared to good cost value (<\$50,000 per QALY)
Value Statement: Uncertain Value (B-NR)	Among patients with FH without evidence of clinical ASCVD taking maximally tolerated statin and ezetimibe therapy, PCSK9 inhibitors provide uncertain value at mid-2018 US list prices.
NOTE: Based o	on initial wholesale acquisition price of \$14K per year
	Price was reduced by 60% in October 2018

Grundy SM, et al. Circulation. 2019;139:e1082-e1143.

101

ICER Base-Case and Sensitivity Analyses Show Cost-Effectiveness of Icosapent Ethyl

ntervention	tervention Incremental Incremental LYs Costs		Incremental Cost per LY QALYs		Cost per QALY Cost per MACE Avoided			
cosapent Ethyl rs. Medical ⁄Ianagement	\$9,000	0.54	0.50	\$17,000 per LY gained	\$18,000 per QALY gained	\$53,000 per MACE avoided		
robabilistic Sen	sitivity Analysis Res	ults						
ntervention	Cost-Effective at		Cost-Effective at Cost-Effective at					
	\$50,000 per QALY		\$100,000 per Q	\$100,000 per QALY		\$150,000 per QALY		
lcosapent Ethyl vs. Medical Management	100%		100%		100%			
				Dating D				
		ICER I	Evidence	Rating: B-				
l Y= life v	ear MACE =	maior cardiov	ascular ever	t: OALY = qu	ality adjusted lif	e vear		
y		najer earaier			ancy adjactod m	o your.		

