Understanding HCM and recent guidelines

Elena Arbelo, MD, PhD – Barcelona, Spain

Disclosures

- **Speaking:** Biosense Webster, Medtronic, Bristol-Myers-Squibb
- **Consulting:** Boston Scientific

Hypertrophic Cardiomyopathy: definition

- Characterized by left ventricular hypertrophy Asymmetric septal hypertrophy is most characteristic
- No other cardiac, systemic or metabolic disease capable of producing the magnitude of increased LV wall thickness present
- Disease-causing variant in a sarcomere gene identified or genetic etiology unresolved

Diagnostic Criteria in Adults

2D echocardiography or cardiac MRI Maximal end-diastolic LV wall thickness >15 mm or Maximal end-diastolic LV wall thickness >13 mm if there is a family history of HCM or a sarcomere gene pathogenic variant is present

Diagnostic Criteria in Children

2D echocardiography or cardiac MRI Maximal LV wall thickness z-score >2 (ESC) or >2.5 (ACC/AHA)

or

Maximal LV wall thickness **z-score** >2 (ACC/AHA) if there is a family history of HCM or a pathogenic sarcomere gene is present

Sheppard MN et al. Virchows Arch 2023;482(4):653-669.

Hypertrophic Cardiomyopathy: prevalence, characteristics and outcomes

Although some patients with HCM have a normal life expectancy without limiting symptoms, many will have important consequences

ESC GUIDELINES

2023 ESC Guidelines for the management of cardiomyopathies

Developed by the task force on the management of cardiomyopathies of the European Society of Cardiology (ESC)

Authors/Task Force Members: Elena Arbelo () *[†], (Chairperson) (Spain), Alexandros Protonotarios () [‡], (Task Force Co-ordinator) (United Kingdom), Juan R. Gimeno () [‡], (Task Force Co-ordinator) (Spain), Eloisa Arbustini () (Italy), JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2024 BY THE AMERICAN HEART ASSOCIATION, INC., AND THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. PUBLISHED BY ELSEVIER. VOL. 83, NO. 23, 2024

CLINICAL PRACTICE GUIDELINE

2024 AHA/ACC/AMSSM/HRS/PACES/SCMR Guideline for the Management of Hypertrophic Cardiomyopathy

A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines

Developed in Collaboration With and Endorsed by the American Medical Society for Sports Medicine, the Heart Rhythm Society, Pediatric & Congenital Electrophysiology Society, and the Society for Cardiovascular Magnetic Resonance

Multidisciplinary care of cardiomyopathies

The patient pathway

'Cardiomyopathy mindset'

Key aspects in the evaluation and management of cardiomyopathies

Arbelo E et al. Eur Heart J 2023;44(37):3503–3626.

Cardiomyopathy phenotypes

Arbelo E et al. Eur Heart J 2023;44(37):3503–3626.

HCM is not a diagnosis!

Differential diagnosis of LVH

Kubo et al. Curr Cardiol Rep. 2017;19(8):65.

Arbelo E et al. Eur Heart J 2023;44(37):3503–3626.

Family history & Age inheritance pattern		Age	Extraca signs sympt	rdiac and oms	Baseline ECG	Laboratory tests
Cardiomyopat	hy phenotype	AD	А	HCM ilineal		
HCM	Sarcomeric	×	Learning difficulties, developmental	Mitochondrial	F . 1	
	Anderson–Fabry		Cardiomyopathy phenotype	Findi	ing	Main cardiac phenotype
	Danon		НСМ	Short PR interval/pre-excita	+1	НСМ
	TTR amyloidosis	Х	TICH			Mite all and data latter and
	RASopathy	Х			↑ Creatine kinase	Mitochondrial diseases Glycogenosis
	Friedreich ataxia					Danon disease
	Mitochondrial					
	Mitochondrial DNA			AV block		
	Nuclear DNA	Х				
					Proteinuria with/without ↓ glomerular filtration rate	Anderson–Fabry disease Amyloidosis
				Extreme LVH	↑ Transaminase	Mitochondrial diseases Glycogenosis Danon disease
				Low QRS voltage ^a	High transferrin saturation/ hyperferritinaemia	
				Superior ORS axis ('northw	Lactic acidosis	Mitochondrial diseases
				Q waves/pseudoinfarction p	Myoglobinuria pat	Mitochondrial diseases
				diseases	Leucocytopenia	Mitochondrial diseases (TAZ gene/Barth
				Glycogenoses		Syndrome)
			Palashual atoria	FHL1 variants		
			raipedrai ptosis	diseases		
			Lentigines	NSML		
			Angiokeratomata	Anderson–Fabry		
				disease		

Arbelo E et al. Eur Heart J 2023;44(37):3503–3626.

Rapezzi M, et al. Eur Heart J 2013;34(19):1448-1458.

Value of ECG:

- Distribution of hypertrophy
- Myocardial fibrosis
- Early diagnosis in relatives
- Diagnostic red flags

CARDIAC AMYLOIDOSIS

ANDERSON-FABRY DISEASE

- Atrial fibril
- Low QRS voltages (disproportion)
- Pseudonecrosis

Myocardial infiltration

- Short PR
- High QRS voltages
- **Repolarization abnormalities**

Myocardial storage

Presence of sarcomeric variants

Elliott PM et al. 2014 ESC HCM guidelines European Heart Journal 2014;35:2733–2779

Genetic architecture of cardiomyopathies

Monogenic forms

- dominant
- genetic heterogeneity
- incomplete penetrance
- variable expressivity

Genetic Testing

For the patient	For relatives
Diagnosis	An individual who does not carry the genetic variant proved to be
Prognosis	responsible for disease in their family can be confidently reassured and
Therapy	discharged without surveillance, while an individual who carries a disease-
Reproductive advice	causing variant can be followed closely, and potentially treated early

Recommendations	Class	Level
Index patients		
Genetic testing is recommended in patients fulfilling diagnostic criteria for cardiomyopathy in cases where it enables diagnosis, prognostication, therapeutic stratification, or reproductive management of the patient, or where it enables cascade genetic evaluation of their relatives who would otherwise be enrolled into long-term surveillance.	I	В

Multimodality imaging

В

Recommendation Class Level A comprehensive evaluation of cardiac dimensions and LV and RV systolic (global and regional) and LV diastolic function is recommended in all patients with cardiomyopathy at initial evaluation, and during follow-up, to monitor disease progression and aid risk stratification and management.

Arbelo E et al. Eur Heart J 2023;44(37):3503-3626.

Recommendations	Class
Contrast-enhanced CMR is recommended in patients with cardiomyopathy at initial evaluation.	- I
Contrast-enhanced CMR should be considered in patients with cardiomyopathy during follow-up	Ша
to monitor disease progression and aid risk stratification and management.	Па
Contrast-enhanced CMR should be considered for the serial follow-up and assessment of	
therapeutic response in patients with cardiac amyloidosis, Anderson–Fabry disease,	lla
sarcoidosis, inflammatory cardiomyopathies, and haemochromatosis with cardiac involvement.	

Arbelo E et al. Eur Heart J 2023;44(37):3503–3626.

Role of imaging in HCM

Diagnosis

Guiding treatment

Prognosis and surveillance

- Health vs. disease
- Phenotyping for aetiology
- Explain symptoms
- Family screening
- Guiding genetic testing

- Heart failure
- LVOT obstruction: cardiac myosin inhibitors, septal myectomy/ablation
- Treat other causes

- SCD risk prediction
- Surveillance: treatment response, disease progression

Echocardiography: LV obstruction assessment

В

В

С

Arbelo E et al. Eur Heart J 2023;44(37):3503–3626.

Treatment of heart failure in hypertrophic cardiomyopathy

Arbelo E et al. Eur Heart J 2023;44(37):3503-3626.

Recommendations for medical treatment of LVOTO

Arbelo E et al. Eur Heart J 2023;44(37):3503-3626.

Recommendations for septal reduction therapy

Recommendations	Class	Level	Recommendations	Class	Level
It is recommended that SRT be performed by experienced operators working as part of a multidisciplinary team expert in the management of HCM.	I	С	Mitral valve repair should be considered in patients with a resting or maximum provoked LVOTO gradient ≥50 mmHg when there is moderate-to-severe mitral regurgitation	lla	С
SRT to improve symptoms is recommended in patients with a resting or maximum provoked LVOT gradient of ≥50 mmHg who are in NYHA/Ross functional class III–IV, despite maximum tolerated medical therapy.	I	В	following isolated myectomy. SRT may be considered in expert centres with demonstrable low procedural complication rates in patients with mild symptoms (NYHA class II) refractory to medical therapy who have		
Septal myectomy, rather than ASA, is recommended in children with an indication for SRT, as well as in adult patients with an indication for SRT and other lesions requiring surgical intervention (e.g. mitral valve abnormalities).	I	С	 a resting or maximum provoked gradient of ≥50 mmHg (exercise or Valsalva) and: moderate-to-severe SAM-related mitral regurgitation; or AF; or 	llb	С
SRT should be considered in patients with recurrent exertional syncope caused by a resting or maximum provoked LVOTO gradient ≥50 mmHg despite optimal medical therapy.	lla	С	 moderate-to-severe left atrial dilatation. Mitral valve replacement may be considered in patients with a resting or maximum provoked LVOTO gradient ≥50 mmHg when there is moderate-to-severe mitral requiritation. 	llb	С
considered in symptomatic patients with a resting or maximum provoked LVOTO gradient ≥50 mmHg and moderate-to-severe mitral regurgitation that cannot be corrected by SRT alone.	lla	С	following isolated myectomy. Surgical AF ablation and/or left atrial appendage occlusion procedures during septal myectomy may be considered in patients with HCM and symptomatic AF.	llb	С

Arbelo E et al. Eur Heart J 2023;44(37):3503–3626.

ICD implantation in HCM

Recommendation Table 23 — Additional recommendations for prevention of sudden cardiac death in patients with hypertrophic cardiomyopathy

Recommendations	Class ^a	Level ^t
Primary prevention		
The HCM Risk-SCD calculator is recommended as a method of estimating risk of sudden death at 5 years in patients aged ≥16 years for primary prevention. ^{525,821–824}	I.	В
Validated paediatric-specific risk prediction models (e.g. HCM Risk-Kids) are recommended as a method of estimating risk of sudden death at 5 years in patients aged <16 years for primary prevention. ^{81,833}	a.	В

Arbelo E et al. Eur Heart J 2023;44(37):3503-3626.

Age		Years
Maximum LV wall thickness		mm
Left atrial size		mm
Max LVOT gradient		mmHg
Family History of SCD	○ No ○ \	/es
Non-sustained VT	○ No ○ \	/es

Unexplained syncope O NO O Yes

HCM Risk-SCD Calculator

Age at evaluation

evaluation

Transthoracic Echocardiographic measurement

Left atrial diameter determined by M-Mode or 2D echocardiography in the parasternal long axis plane at time of

The maximum LV outflow gradient determined at rest and with Valsalva provocation (irrespective of concurrent medical treatment) using pulsed and continuous wave Doppler from the apical three and five chamber views. Peak outflow tract gradients should be determined using the modified Bernouilli equation: Gradient= 4V², where V is the peak aortic outflow velocity

History of sudden cardiac death in 1 or more first degree relatives under 40 years of age or SCD in a first degree relative with confirmed HCM at any age (post or ante-mortem diagnosis).

3 consecutive ventricular beats at a rate of 120 beats per minute and <30s in duration on Holter monitoring (minimum duration 24 hours) at or prior to evaluation.

History of unexplained syncope at or prior to evaluation.

Risk of SCD at 5 years (%):	
ESC recommendation:	

Reset

2014 ESC Guidelines on Diagnosis and Management of Hypertrophic Cardiomyopathy (Eur Heart J 2014 - doi:10.1093/eurhearti/ehu284)

O'Mahony C et al Eur Heart J (2014) 35 (30): 2010-2020

HCM Risk-SCD should not be used in:

- Paediatric patients (<16 years)
- Elite/competitive athletes
- HCM associated with metabolic diseases (e.g. Anderson-Fabry disease), and syndromes (e.g. Noonan syndrome).
- Patients with a previous history of aborted SCD or sustained ventricular arrhythmia who should be treated with an ICD for secondary prevention.

Caution should be exercised when assessing the SCD in patients following invasive reduction in left ventricular outflow tract obstruction with myectomy or alcohol septal ablation.

Pending further studies, HCM-RISK should be used cautiously in patients with a maximum left ventricular wall thickness ≥35 mm.

Additional recommendations for prevention of sudden cardiac death in patients with hypertrophic cardiomyopathy

Recommendations	Class	Level
Primary prevention		
 Implantation of an ICD should be considered in patients with an estimated 5-year risk of sudden death of ≥6%, following detailed clinical assessment that considers: (i) the lifelong risk of complications; (ii) competing mortality risk from the disease and comorbidities; AND (i) the impact of an ICD on lifestyle, socio-economic status, and psychological health. 	lla	B
In patients with LV apical aneurysms , decisions about primary prevention ICD based on an assessment of risk using the HCM Risk-SCD or a validated paediatric risk prediction (e.g. HCM Risk-Kids) tool and not solely on the presence of the aneurysm should be considered.	lla	В

Apical Aneurysms

Lorenzini and Elliott. Eur Heart J 2023; 44(17):1519-1521.

Additional recommendations for prevention of sudden cardiac death in patients with hypertrophic cardiomyopathy

Recommendations	Class	Level
Primary prevention (continued)		
Implantation of an ICD may be considered in individual patients with an		
estimated 5-year risk of SCD of between \geq 4% and <6%, following		
detailed clinical assessment that takes into account the lifelong risk of	llb	В
complications and the impact of an ICD on lifestyle, socio-economic		
status, and psychological health.		
For patients who are in the low-risk category (<4% estimated 5-year risk		
of SCD), the presence of extensive LGE (≥15%) on CMR may be		
considered in shared decision-making with patients about prophylactic	llh	D
ICD implantation, acknowledging the lack of robust data on the impact	UID	D
of scar quantification on the personalized risk estimates generated by		
HCM Risk-SCD or a validated paediatric model (e.g. HCM Risk-Kids).		

Late-gadolinium enhancement for risk stratification

11 Studies 5,500 patients Mean follow-up 4.5 years SCD event rate 4.4% LGE in 61% of patients

FIGURE 2 LGE Extent as a Predictor of SCD in HCM

	Extensiv	ve LGE	Non-Extensive LGE			Odds Ratio		Odds	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95%	CI	M-H, Rando	om, 95% Cl	
Aquaro 2020	10	29	12	154	8.0%	6.23 [2.37, 16.37]				
Chan 2014	18	285	19	1,008	17.1%	3.51 [1.82, 6.78]			_	
Chen 2022	8	49	3	134	3.9%	8.52 [2.16, 33.61]				
Freitas 2019	17	106	6	387	8.1%	12.13 [4.65, 31.64]				
Greulich 2021	11	60	3	143	4.3%	10.48 [2.81, 39.12]				_
Mentias 2018	32	342	28	1,081	27.2%	3.88 [2.30, 6.55]			_ 	
Park 2020	4	103	2	207	2.5%	4.14 [0.75, 23.00]		_	<u> </u>	
Rubinshtein 2010	4	112	4	312	3.8%	2.85 [0.70, 11.60]		_		
Todiere 2019	14	73	8	281	8.9%	8.10 [3.25, 20.18]				
Weissler-Snir 2020	15	72	6	115	7.4%	4.78 [1.76, 12.99]				
Yang 2023	10	135	9	362	8.7%	3.14 [1.25, 7.90]				
Total (95% CI)		1,366		4,184	100.0%	4.93 [3.75, 6.47]			•	
Total events	143		100							
Heterogeneity: Tau ² = 0 Test for overall effect: Z	Heterogeneity: Tau ² = 0.00; Chi ² = 9.99, df = 10 (P = 0.44); l ² = 0% Test for overall effect: Z = 11.46 (P < 0.00001)									

Kiaos A, et al. J Am Coll Cardiol Img. 2024;17(5):489-497.

Late-gadolinium enhancement for risk stratification

— SROC Curve — Confidence Ellipse 🔳 Optimal Cutoff LGE 10%

TABLE 4 Accuracy of LGE Extent^a in Predicting SCD in HCM Patients Across Different Thresholds

Threshold (% of LV Mass)	Sensitivity (95% CI)	Specificity (95% CI)	Positive Likelihood Ratio	Negative Likelihood Ratio
5%	0.89 (0.63-0.98)	0.43 (0.33-0.54)	1.56	0.26
10%	0.73 (0.49-0.88)	0.67 (0.57-0.76)	2.21	0.40
15%	0.58 (0.34-0.78)	0.79 (0.69-0.86)	2.76	0.53
20%	0.46 (0.22-0.73)	0.85 (0.76-0.91)	3.07	0.64

Kiaos A, et al. J Am Coll Cardiol Img. 2024;17(5):489-497.

Additional recommendations for prevention of sudden cardiac death in patients with hypertrophic cardiomyopathy

Recommendations	Class	Level
Primary prevention (continued)		
For patients who are in the low-risk category (<4% estimated 5-year risk of		
SCD), the presence of LVEF <50% may be considered in shared decision-	llb	
making with patients about prophylactic ICD implantation, acknowledging		D
the lack of robust data on the impact of systolic dysfunction on the		D
personalized risk estimates generated by HCM Risk-SCD or a validated		
paediatric model (e.g. HCM Risk-Kids).		

LV systolic dysfunction

Key messages

Multidisciplinary

Patient-centred Family-centred

Multiparametric:

- Family history
- Signs and symptoms (extracardiac)
- Baseline ECG
- Lab tests
- Multimodality imaging (echo/CMR)
- Genetic testing
- Holter