

Immuno-Oncology at a Glance

TOPICS:

- What's immuno-oncology (I-O)
- Immune system and cancer
 - <u>Tumor-associated antigens</u>
 - Antigen-presenting cells (APCs)
 - <u>T cells</u>
 - <u>B cells</u>
 - Antibodies
 - <u>NK cells</u>
 - <u>Tumor-associated antigens and immune system</u> <u>activation</u>
- Practical and safety considerations
 - Potential patterns of response to I-O therapy
 - Pseudo-progression and I-O therapy
 - Adverse effects (AEs)
 - Clinical implications of immune-associated AEs

What's immuno-oncology (I-O)

Improved survival remains a challenge in some advanced cancers. 5-year survival remains poor for many patients with metastatic solid tumors.¹ There is an ongoing need for new treatments and therapeutic modalities for patients with advanced cancers.²

Pillars of Cancer Therapies

I-O therapies are being investigated in an attempt to utilize the body's own immune system to fight diseases.³⁻⁵

The immune system and cancer: immunoediting

The process by which the immune system recognizes, destroys, and sculpts tumors is known as **immunoediting**.¹ There are 3 phases in immunoediting^{1,2}:

- **1.** ELIMINATION (cancer immunosurveillance) Cancer cells are detected by the immune system and/or eliminated. Tumor cells not destroyed may enter the equilibrium phase.^{1,2}
- 2. EQUILIBRIUM (cancer dormancy) Some cancer cells persist but the immune system prevents tumor outgrowth.^{1,2}
- **3.** ESCAPE (cancer progression) Resistant variant cells acquire the ability to evade immune detection or elimination.^{1,2} This results in clinically apparent disease.²

IMMUNE SYSTEM AND CANCER

Players in the immune response against cancer

Tumor-associated antigens¹

 Are abnormal cell substances/proteins (tumor antigens) which can be recognized and responded to by the immune system

Antigen-presenting cells (APC)¹

- Take up antigens from infected or malignant cells and process them into shorter peptide segments
- Present antigens to T cells to mobilize an immune response

T cells¹

- Have T-cell receptors, which can recognize tumor-associated antigens
- Play a major role in killing infected or malignant cells when activated
- Help perpetuate ongoing
 immune responses

Players in the immune response against cancer

B cells¹

- Display B-cell receptors, which can bind free floating antigens in the blood or lymph
- Once activated, B cells differentiate to become plasma cells which can secrete large quantities of antibodies against a specific antigen¹

Antibodies¹

- Are secreted by activated B cells, called plasma cells
- Tag antigen-containing cells for attack by other parts of the immune system, or neutralize their targets directly by blocking important mechanisms

NK cells¹

- Can recognize infected or malignant cells innately without contact with an antigen-presenting cell or antibody (this allows NK cells to launch rapid responses against stressed cells)
- Can also attack based on recognition of antibodies on a cell surface

Tumor-associated antigens can cause an **immune response**¹

Potential patterns of response to I-O therapy

Therapies that affect the immune system may not induce a measurable impact on tumor growth *immediately* after administration.¹³ Potential effects may be seen weeks to months after initial administration.

Immediate response¹

Tumor regression after early radiographical progression^{1-3,5,7-11}

Early but clinically insignificant progression^{1,4-5, 12}

There is also the potential that patients may not respond to therapy.

1. Fox BA, et al. J Transl Med. 2011; 9:214-226 | 2. Hoos A, et al. J Immunother. 2007;30:1-15 | 3. Lipson EJ. Oncolmmunology. 2013;2:e23661-3 | 4. Suzuki H, et al. J Transl Med. 2013;11:97-106 | 5. Slovin SR. Front Oncol. 2012:2:43 | 6. Madan RA et al. Oncologist. 2010; 15:969-975 | 7. John T, et al. PLoS One. 2013-8:e67876 | 8. Aarntzem EHJF, et al. Cell Mol Life Sci. 2013; 70-2237-2257 | 9. FDA Guidance for Industry: Clinical Considerations for Therapeutic Cancer Vaccines. 2009 | 10. Sze DY, et al. J Vasc Interv Radiol. 2003;14:279-290 | 11. Senzer NN, et al. J Clinc Oncol 2009; 27:5763-5771 | 12. Naik JD, et al. Clinc Cancer Res. 2011;17:4214-4224 | 13.Hoos A and Britten CM. Oncolmmunology. 2012;1:334-339

Pseudo-progression and I-O therapy

Apparent progression upon radiographic imaging after initial I-O therapy can actually be a sign of **pseudo-progression**. **Pseudo-progression** may occur when **T cells infiltrate the tumor site** and cause tumors to flare or new lesions to appear upon imaging.^{1,2,3}

Adverse effects (AEs)

Tumor cells arise from normal cells in our body so some **tumor-associated antigens** may also be associated with normal, healthy cells. By 'activating' the immune system with I-O therapy, a major concern is that the immune system will attack **normal, healthy cells** along with **tumor cells**.¹

Clinical implications of immune-associated AEs

- AEs can be serious and potentially fatal
- Remain vigilant throughout and after treatment
- Educate and encourage patients to monitor for and report symptoms of immune-associated AEs
- Not all AEs can be managed and some patients may have to discontinue treatment
 - To give patients the best chance of therapeutic success, follow management guidelines for immune-associated AEs

©2015 Bristol-Myers Squibb Company. All rights reserved. ONCUS15UB00349-01-01 04/15

