# Clinical Decisions to Effectively Maximize Treatment Outcomes

Dr. Marcos Horton Co-Director and Founder Pregna Medicina Reproductiva Past-President Argentinian Society for Reproductive Medicine Buenos Aires, Argentina



## Despite Continuous Improvements in ART Clinical Results are Similar



### **REDLARA 2012**

| Table 2. Clinical pregnancy rate and delivery rate IVF/ICSI (*) cycles in 2012. |                      |                                 |                       |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------|----------------------|---------------------------------|-----------------------|--|--|--|--|--|--|--|
| ART procedure                                                                   | Oocyte pick up (OPU) | Clinical pregnancy rate per OPU | Delivery rate per OPU |  |  |  |  |  |  |  |
| ICSI                                                                            | 25,420               | 26.5%                           | 20.9%                 |  |  |  |  |  |  |  |
| IVF                                                                             | 4,404                | 32.8%                           | 26.5%                 |  |  |  |  |  |  |  |

(\*) one case was labeled as "other"





### **How to Optimize Results?**

### **ART is a Multi-Step Process**



### **Ovarian Stimulation**

### # Eggs retrieved, N=1135, 2014





### What is Normal? How Do We Individualize?





Sunkara et al. Human Reproduction. 2011; Vol.26, No.7 pp. 1768. 1774



Sunkara et al. Human Reproduction. 2011; Vol.26, No.7 pp. 1768. 1774

### **Reproductive Performance & # Eggs**

Pts 18-34 years old Normal BMI



Human Reproduction Update, Vol.17, No.2 pp. 184-196, 2011

Advanced Access publication on September 15, 2010 doi:10.1093/humupd/dmq041

human reproduction update

> Clinical outcomes in relation to the daily dose of recombinant folliclestimulating hormone for ovarian stimulation in *in vitro* fertilization in presumed normal responders younger than 39 years: a meta-analysis

10 RCT comparing different rFSH starting doses N=1952 cycles M.D. Sterrenburg<sup>1,\*</sup>, S.M. Veltman-Verhulst<sup>1</sup>, M.J.C. Eijkemans<sup>1,2</sup>, E.G. Hughes<sup>3</sup>, N.S. Macklon<sup>1,4</sup>, F.J. Broekmans<sup>1</sup>, and B.C.J.M. Fauser<sup>1</sup>

<sup>1</sup>Department of Reproductive Medicine and Gynaecology, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands <sup>2</sup>Julius Centre for Health Sciences and Primary Care, University Medical Centre, Utrecht, The Netherlands <sup>3</sup>Department of Obstetrics and Gynaecology, McMaster University, Hamilton, Ontario, Canada <sup>4</sup>Department of Obstetrics and Gynaecology, University of Southampton, Southampton, UK



Figure 8 Summary all parameters; (A) Comparison A: 100 versus 200 IU/day; (B) Comparison B: 150 versus 200–250 IU/day. St WMD, standardized weighted mean difference; OR, odds ratio; OPU, ovum pick up; OHSS, ovarian hyperstimulation syndrome.

### **Outcome According to Ovarian Response**



Meta-analysis 3 RCTs N=592 first IVF cycles

Verberg, et al. Human Reproduction Update. 2009;15: 5-12.

### **"Tailored Stimulation"**



### **Clinical Decisions Start with the Basics**





A Validated Model of Serum Anti-Mullerian Hormone from Conception to Menopause. Kelsey, et al. PLoS ONE. July 2011



A Validated Model of Serum Anti-Mullerian Hormone from Conception to Menopause. Kelsey, et al. PLoS ONE. July 2011







### **Predicting Ovarian Response: Diagnosis**



LaMarca and Sunkara, et al. Human Reproduction Update. 2014;20:124-140.

# Starting Dose: The "Dosogram" Based on AFC & AMH

La Marca and Sunkara

FSH (IU/L)

15

14 -

13



- Prevents OHSS
- Predicts Response
- Cost Effective

Yates et al. Human Reproduction; 2011; 26: 2353-2362

|                                                                | GnRH Agonist |       |            | G        | inRH Antago | No GnRH Analogue    |      |         |
|----------------------------------------------------------------|--------------|-------|------------|----------|-------------|---------------------|------|---------|
|                                                                | Long         | Short | Microflare | Standard | Mild        | Modified<br>Natural | Mini | Natural |
| r-FSH                                                          |              |       |            |          |             |                     |      |         |
| HMG                                                            |              |       |            |          |             |                     |      |         |
| r-FSH+LH                                                       |              |       |            |          |             |                     |      |         |
| Others:<br>Clomiphene<br>Letrozole<br>Testosterone<br>Estrogen |              |       |            |          |             |                     |      |         |

|                                                                |      | GnRH A | gonist     | (        | GnRH Antaន្ | No GnRH Analogue    |      |         |
|----------------------------------------------------------------|------|--------|------------|----------|-------------|---------------------|------|---------|
|                                                                | Long | Short  | Microflare | Standard | Mild        | Modified<br>Natural | Mini | Natural |
| r-FSH                                                          | Х    |        |            | Х        |             |                     |      |         |
| HMG                                                            |      |        |            |          |             |                     |      |         |
| r-FSH+LH                                                       | Х    |        |            | Х        |             |                     |      |         |
| Others:<br>Clomiphene<br>Letrozole<br>Testosterone<br>Estrogen |      |        |            |          |             |                     |      |         |

|                                                                |      | GnRH A | gonist     | (        | SnRH Antago | No GnRH Analogue    |      |         |
|----------------------------------------------------------------|------|--------|------------|----------|-------------|---------------------|------|---------|
|                                                                | Long | Short  | Microflare | Standard | Mild        | Modified<br>Natural | Mini | Natural |
| r-FSH                                                          |      |        |            |          | Х           |                     |      |         |
| HMG                                                            |      |        |            |          |             |                     |      |         |
| r-FSH+LH                                                       |      |        |            |          | Х           |                     |      |         |
| Others:<br>Clomiphene<br>Letrozole<br>Testosterone<br>Estrogen |      |        |            |          |             |                     |      |         |

|                                                                | GnRH Agonist |       |            | G        | nRH Antagoi | No GnRH Analogue    |      |         |
|----------------------------------------------------------------|--------------|-------|------------|----------|-------------|---------------------|------|---------|
|                                                                | Long         | Short | Microflare | Standard | Mild        | Modified<br>Natural | Mini | Natural |
| r-FSH                                                          |              |       |            |          |             |                     |      |         |
| HMG                                                            |              |       |            |          |             |                     |      |         |
| r-FSH+LH                                                       |              |       | Х          |          |             |                     |      |         |
| Others:<br>Clomiphene<br>Letrozole<br>Testosterone<br>Estrogen |              |       |            |          |             |                     |      |         |

# **GnRHa Triggering**

LH-surge after GnRHa triggering versus natural cycle



### ″ OHSS

- "% reeze all+approach (check P levels!)
- " Fertility preservation
- " Egg donation

### **Timing of hCG Trigger**

### Prolonging oocyte in vitro culture and handling time does not compensate for a shorter interval from human chorionic gonadotropin administration to oocyte pickup

Roni Garor, M.Sc., Yoel Shufaro, M.D., Ph.D., Naomi Kotler, B.Sc., Dania Shefer, M.Sc., Natalia Krasilnikov, M.Sc., Avi Ben-Haroush, M.D., Haim Pinkas, M.D., Benjamin Fisch, M.D., Ph.D., and Onit Sapir, Ph.D.



Clinical pregnancy rates (PR) by type of pituitary suppression in cycles with <36-hour or >36-hour hCG–OPU interval. A longer interval led to a significantly better reproductive outcome in GnRH agonist cycles.

Garor. OPU and ICSI intervals and ART outcome. Fertil Steril 2015.

**FIGURE 1** 

# *Fertility & Sterility.* 2015;103(1):72-75

Jamieson et al. *Fertil Steril*. 1991;56:93. 97.

Bokal et al. Hum Reprod.

2005;20:1562. 1568.

86 583 587

Raziel et al. Fertil Steril. 2006;



Clinical pregnancy rates (PR) by OPU–denudation interval (more or less than 2 hours) in cycles with <36-hour or >36-hour hCG–OPU intervals.

Garor. OPU and ICSI intervals and ART outcome. Fertil Steril 2015.

#### FIGURE 2

# **ICSI for All?**

### **Advantages**

- Standardization & task organization in ART labs
- Uniformity (variability, checkpoints in time-lapse)
- "Mastering" the technique for personnel training in other invasive procedures (blastomere & trophectoderm biopsy, assisted hatching, fragment removal, cytoplasmic transfer, etc.)

### Disadvantages

- Overlapping tasks overwhelming
- Burden to human resources
- Security? (physiological barriers bypassed)
- Follow up in high risk population confusing
- Cost-efficacy?
- No evidence of benefit in CPR, IR or LBR



| Table 1. Assisted Reproduction technology procedures and access in 2012 |                   |                               |          |           |          |       |          |        |                |  |  |  |
|-------------------------------------------------------------------------|-------------------|-------------------------------|----------|-----------|----------|-------|----------|--------|----------------|--|--|--|
| Country                                                                 | Number of clinics |                               |          |           |          |       |          |        |                |  |  |  |
| Country                                                                 | Number of clinics | IVF/ICSI initiated cycles (*) | IVF (**) | ICSI (**) | FET(***) | OD    | FP(****) | Total  | Access (*****) |  |  |  |
| Argentina                                                               | 25                | 6,461                         | 504      | 5,515     | 3,027    | 1,543 | 429      | 11,031 | 1,193          |  |  |  |
| Bolivia                                                                 | 1                 | 215                           | 148      | 62        | 14       | 8     | 923      | 237    | 96             |  |  |  |
| Brazil                                                                  | 57                | 16,030                        | 1,070    | 13,937    | 4,252    | 1,170 | 0        | 21,452 | 447            |  |  |  |
| Chile                                                                   | 8                 | 1,563                         | 131      | 1,321     | 549      | 197   | 48       | 2,309  | 595            |  |  |  |
| Colombia                                                                | 11                | 977                           | 293      | 622       | 262      | 247   | 13       | 1,486  | 139            |  |  |  |
| Ecuador                                                                 | 6                 | 608                           | 216      | 324       | 165      | 154   | 107      | 927    | 254            |  |  |  |
| Guatemala                                                               | 1                 | 100                           | 38       | 62        | 7        | 17    | 0        | 124    | 37             |  |  |  |
| Mexico                                                                  | 27                | 3,345                         | 1,222    | 2,017     | 1,046    | 1,140 | 114      | 5,531  | 196            |  |  |  |
| Nicaragua                                                               | 1                 | 91                            | 46       | 41        | 0        | 9     | 0        | 100    | 67             |  |  |  |
| Panama                                                                  | 1                 | 245                           | 7        | 192       | 86       | 33    | 9        | 364    | 452            |  |  |  |
| Peru                                                                    | 6                 | 1,264                         | 298      | 875       | 430      | 547   | 114      | 2,241  | 308            |  |  |  |
| Dominican R.                                                            | 2                 | 80                            | 42       | 35        | 5        | 26    | 0        | 111    | 48             |  |  |  |
| Uruguay                                                                 | 2                 | 293                           | 20       | 233       | 77       | 46    | 2        | 416    | 585            |  |  |  |
| Venezuela                                                               | 7                 | 585                           | 369      | 184       | 153      | 259   | 5        | 997    | 148            |  |  |  |
| Total                                                                   | 155               | 31,857                        | 4,404    | 25,420    | 10,073   | 5,396 | 1,764    | 47,326 | 367.0          |  |  |  |

**REDLARA 2012** 

(\*) initiated cycles; (\*\*) oocyte pick ups; (\*\*\*) includes the transfer of own and donated oocytes; (\*\*\*\*) initiated fertility preservation cycles; (\*\*\*\*) number of cycles/million of women 15-45 years

### Randomized Controlled Trial Did Not Show Benefits Using ICSI in Non-Male Factor Infertility

435 non-male factor cycles Multicentric (4 clinics) randomized

- . IVF N= 224
- . ICSI N= 211
- . Implantation rate > IVF than ICSI

(95/318 [30%] vs 72/325 [22%]; RR 1.35 [95% CI 1.04-1.76]).

. Pregnancy rates also higher in IVF vs. ICSI

(72 [33%] vs 53 [26%]; RR 1.17 [0.97-1.35]).

. Work load time in the lab much lower in IVF

(22.9 [SD 12.1] vs 74.0 [38.1] min; 95% CI for difference 45.6-56.6).

Battacharya et al. Lancet. 2001; Jun 30; 357(9274): 2075-9415.



Publication: 2003 Revised: August 2010

Intra-cytoplasmic sperm injection versus conventional techniques for oocyte insemination during in vitro fertilisation in couples with non-male subfertility (Review)

van Rumste MME, Evers JLH, Farquhar C

#### Analysis I.I. Comparison | ICSI versus IVF, Outcome | Pregnancy rate.

Review: Intra-cytoplasmic sperm injection versus conventional techniques for oocyte insemination during in vitro fertilisation in couples with non-male subfertility

Comparison: I ICSI versus IVF

Outcome: | Pregnancy rate

| Study or subgroup | IVF    | ICSI   |                  |           | Od  | ds Ratio |     | Odds Ratio          |  |  |
|-------------------|--------|--------|------------------|-----------|-----|----------|-----|---------------------|--|--|
|                   | n/N    | n/N    | M-H,Fixed,95% CI |           |     |          | 6   | M-H,Fixed,95% C     |  |  |
| Bhattacharya 2001 | 70/213 | 51/202 |                  |           | T   | •        |     | 1.45 [ 0.95, 2.22 ] |  |  |
|                   |        |        |                  |           |     |          | 1   |                     |  |  |
|                   |        |        | 0.2              | 0.5       | - E | 2        | 5   |                     |  |  |
|                   |        |        | Fav              | ours ICSI |     | Favours  | IVF |                     |  |  |

### **To Hatch or Not to Hatch?**



Published 2013

Assisted hatching on assisted conception (in vitro fertilisation (IVF) and intracytoplasmic sperm injection (ICSI)) (Review)

Carney SK, Das S, Blake D, Farquhar C, Seif MM, Nelson L

Slight increase in PR's, although evidence is low to moderate and LBR's were reported in only a few studies, more data needed.

A subgroup of recurrent failed IVF could benefit.

### **Embryo Transfer: a Critical Step**



### Importance of embryo transfer technique in maximizing assisted reproductive outcomes

Fertility & Sterility. 2016;15(4):855-860.

William B. Schoolcraft, M.D.

Colorado Center for Reproductive Medicine, Lone Tree, Colorado

" Pregnancy rates & provider at embryo transfer.

Hearns-Stokes et al. Fertil Steril. 2000 Jul;74(1):80-6.

<sup>"</sup> Transfer technique and catheter choice.

Ghazzawi et al. Hum Reprod. 1999 Mar;14(3):677-82.

Ultrasound-guided soft catheter embryo transfers.
Wood et al. Hum Reprod. 2000 Jan;15(1):107-12.

<sup>"</sup> Immediate ambulation after embryo transfer: a prospective study.

Bar-Hava et al. Fertil Steril. 2005;Mar;83(3):594-7.

Minimizing embryo expulsion after et: a randomized controlled study. Mansour R. et al. Hum Reprod. 2005; Jan 20(1):170-4.

<sup>"</sup> Embryo transfer technique.

Mansour RT et al. Hum Reprod. 2002;May 17(5):1149-53.

Comparison between catheters for ultrasound-guided embryo transfer. Karande V et al. *Fertil Steril. 2002;*Apr 77(4):826-30

### **Mock Transfer Protocol**

- A mock transfer is scheduled during workup previous to IVF.
- A soft catheter is passed under US guidance, and if passage is negative, other catheters are tried.
- If negative a second appointment is scheduled with an assistant, and explore the need of adjuvant maneuvers, anesthesia, instrumentation, or sedative medication.
- If negative a diagnostic hysteroscopy is scheduled

## **Transfer Protocol**

- " Full bladder & Ultrasound guidance
- " Assistant checks mock transfer
  - Positive: proceed with instructions to biologist
  - Negative: perform MT up to internal os
- " Vaginal wash with saline + cervical os with culture media
- "Biologist checks identity with the patient
- "Biologist loads embryo/s with a witness
- Soft catheter used (COOK Echotip soft pass)
- " Smooth ejection and slow backup
- Total procedure lasts < 2 min</p>
- Patient walks back to the room
- <sup>7</sup> 10 minutes bed rest

### **Embryo Transfer: Classification**

|   | ET | US  | Full<br>Bladder | Mid<br>1/3 | Fundal<br>touch | See<br>discharge | Ejection<br>Speed | Catheter<br>removal | Blood tip | Embryo<br>retention | Time<br><2 min | Catheter<br>change |
|---|----|-----|-----------------|------------|-----------------|------------------|-------------------|---------------------|-----------|---------------------|----------------|--------------------|
| ſ | A  | YES | YES             | YES        | NO              | YES              | <b>SMOOTH</b>     | SLOW                | NO        | NO                  | YES            | NO                 |
|   | в  | VES | VES             | VES        | NO              | VES              | REGULAR           | MEDIUM              | NO        | NO                  | VES            | V/N                |
|   | C  | YES | YES             | Y/N        | V/N             | Y/N              | FAST              | FAST                | Y/N       | Y/N                 | Y/N            | Y/N                |
|   | D  | NO  | NO              | NO         | YES             | NO               | FAST              | FAST                | YES       | Y/N                 | NO             | YES                |

### **Pregnancy Rate and Type of Transfer**



### P= 0.01



### **Pregnancy Rates per Clinician**





### **Clinical Decisions to Maximize Outcome**

- Tailor stimulation dosing to improve PR's and decrease OHSS Use dosograms
- Use protocols with GnRH antagonists

Equal PR's & Almost 0% OHSS

• Check P levels on day of hCG

If > 1.5-1.6 freeze all

• Trigger with GnRH agonists when possible

Freeze all cycles, egg donors, oocyte vitrification cycles

### **Clinical Decisions to Maximize Outcome**

• IVF for non-male factor & ICSI for male factor, or as a tool in: Thawed eggs, PGS, HIV,

Frozen sperm

• Schedule OPU @ 36 hs. or more

Could improve PR's especially in agonist cycles

Culture to the blastocyst stage ideally

More checkpoints to assess the embryo

• Use Time Lapse Systems?

Could improve outcome added to other markers

### **Clinical Decisions to Maximize Outcome**

• Establish mock transfer & real transfer protocols:

Improves PR's & improves differences between clinicians

• Freeze-all cycles?

Still not clear from RCT

• Perform assisted hatching?

May be beneficial for RIF

• Offer CCS

RCT show improvement in OPR's, IR's, and reduces TTP

# Clinical Decisions to Effectively Maximize Treatment Outcomes

Dr. Marcos Horton Co-Director and Founder Pregna Medicina Reproductiva Past-President Argentinian Society for Reproductive Medicine Buenos Aires, Argentina

